A concise overview (75 references) of the analytical fractionation of aquatic humic substances using sequential-stage ultrafiltration is presented. First, humic substances in aquatic environments and actual problems connected with their fractionation and analysis are briefly considered. The molecular size classification of dissolved humic substances by means of multistage ultrafiltration, with special emphasis on on-line techniques, is the focal point of the discussion. In particular, the capabilities of ultrafiltration for the size fractionation and characterization of species formed between colloidal humic substances and pollutants (e.g. metals) are stressed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0039-9140(97)00204-xDOI Listing

Publication Analysis

Top Keywords

humic substances
20
aquatic humic
8
concise overview
8
analytical fractionation
8
sequential-stage ultrafiltration
8
humic
5
substances
5
membrane filtration
4
filtration studies
4
studies aquatic
4

Similar Publications

Removal of dissolved organic matter in road runoff with sludge-based filters from the drinking water treatment plant.

Water Sci Technol

January 2025

China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.

Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.

View Article and Find Full Text PDF

The interactions of nanoplastics (NPs) with natural organic matters (NOMs) dominate the environmental fate of both substances and the organic carbon cycle. Their binding and aggregation mechanisms at the molecular level remain elusive due to the high structural complexity of NOMs and aged NPs. Molecular modeling was used to understand the detailed dynamic interaction mechanism between NOMs and NPs.

View Article and Find Full Text PDF

Humic substances modulate bacterial communities and mitigate adverse effects of temperature stress in coral reef organisms.

J Appl Microbiol

January 2025

Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, Portugal.

Aims: In the present study, we tested if terrestrially-derived humic substances (HS) could mitigate the adverse effects of elevated temperature and UVB radiation on the bacterial communities of two hard corals (Montipora digitata and Montipora capricornis), one soft coral (Sarcophyton glaucum), sediment and water. We also examined the impact of temperature, UVB radiation and HS supplementation on coral photosynthetic activity, a proxy for coral bleaching.

Methods And Results: We performed a multifactorial experiment using a randomized-controlled microcosm setup.

View Article and Find Full Text PDF

Human activities and climate change have significantly increased humic substances in freshwater ecosystems over the last few decades. This increase is particularly concerning during seasonal changes or after heavy rainfall, when concentrations can easily increase up to tenfold. This phenomenon, known as "browning," has unknown consequences for aquatic organisms.

View Article and Find Full Text PDF

Recently, thallium (Tl) contamination at trace levels has gained worldwide attention, particularly in the remote ore-smelting regions of China. To effectively eliminate the residual target Tl(I) ions, one of the best strategies is to develop novel adsorbents with high selectivity. In this study, we selected silicate mineral waste (SMW) and chitosan (CTS) to synthesize a low-cost composite adsorbent for the removal of trace Tl(I).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!