A Fourier transform spectrometer is used to record the infrared emission from chlorinated hydrocarbons combusted in an air/acetylene flame. In this manner, the chlorinated hydrocarbons are determined by monitoring the infrared emission of hydrogen chloride at 2653 cm(-1). Discussion is presented of the air/acetylene flame background, and the potential spectral interference from the emission of deuterated species. Practical detection limits for chloroform, carbon tetrachloride and methylene chloride in acetone, methanol, and ethanol are solvent independent and are found to be 1.1, 0.80, and 1.0%, respectively. Calibration curves for these three analytes are linear from their detection limits to approximately 55% (v/v). In addition, evidence is presented that flame flicker-noise does not lead to a multiplex disadvantage when the Fourier transform instrument is used for data acquisition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0039-9140(93)80330-t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!