Determination of water in organic solvents by flow-injection analysis with Karl Fischer reagent and a biamperometric detection system.

Talanta

University of Twente, Department of Chemical Technology, Laboratory for Chemical Analysis, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: January 1988

A flow-injection system with a biamperometric flow-through detector provided with two platinum plate electrodes was tested for the determination of water with a two-component pyridine-free Karl Fischer reagent. The response was shown to be linear in the concentration range 0.03-0.11% water in methanol, ethanol or 2-propanol, with methanol as the carrier solvent. The maximum sampling frequency was about 150 samples per hr. It appeared to be possible to introduce a membrane separation step, thus allowing for the determination of water in fouled process streams. To avoid direct contact between the Karl Fischer solution and the pumping tubes, and thus extend the lifetime of the tubes, an indirect delivery system, based on replacement of the solution by pumped silicone oil, was also applied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0039-9140(88)80013-4DOI Listing

Publication Analysis

Top Keywords

determination water
12
karl fischer
12
fischer reagent
8
water organic
4
organic solvents
4
solvents flow-injection
4
flow-injection analysis
4
analysis karl
4
reagent biamperometric
4
biamperometric detection
4

Similar Publications

Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.

View Article and Find Full Text PDF

This study explores the effect of different extraction methods and preheat treatments in obtaining protein concentrate from pumpkin seed flour. The effects on the yield and functional properties of pumpkin seed protein concentrate (PSPC) were compared alongside microwave and conventional preheating methods using alkali, salt, and enzyme-assisted alkali extraction techniques. Analytical assessments included proximate analysis, soluble protein content, water solubility index (WSI), emulsification activity (EA) and stability (ES), foaming capacity (FC) and stability (FS), and antioxidant activity (AA).

View Article and Find Full Text PDF

Nitrogen fertilizer application is an important method for the production of high-quality maize. However, nitrogen fertilizer addition patterns vary according to regional climate, field management practices, and soil conditions. In this study, a meta-analysis was used to quantify the yield effects of nitrogen addition on maize, and meta-regression analysis and a random forest model were used to study the main factors affecting the yield effects of nitrogen addition on maize.

View Article and Find Full Text PDF

Cold stress during the seedling stage significantly threatens rice ( L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage.

View Article and Find Full Text PDF

Toxicity of standing milkvetch infected with in white mice.

Front Vet Sci

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China.

Introduction: Standing milkvetch () is widely distributed in the wild in Eurasia and North America and has been bred for cultivated forage in China. Yellow stunt and root rot disease caused by is the primary disease of standing milkvetch. promotes the production of swainsonine in the plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!