The presence of protein or complex of proteins that specifically bind to human satellite 3 (HS3) was shown during investigations of the nuclear matrix. The specificity of binding of HS3 was shown by using nuclear matrix immobilized on nitrocellulose. The activity disappeared after extractions of the nuclear matrix. The presence of specific activity in low salt extract was shown by gel retardation assay with whole HS3 fragment. All the subfragments of HS3 after Sau3A restriction (1 kb, 0.36 kb, 0.41 kb) also retarded in the mixture with this protein extract. DNA-protein complexes were stable even in the presence of a 1000-fold excess of competitive DNA. These data are discussed in the frame of hypotheses about the three dimensional organization of interphase chromatin.
Download full-text PDF |
Source |
---|
Front Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFDNA Repair (Amst)
January 2025
Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms.
View Article and Find Full Text PDFDokl Biol Sci
January 2025
Research Center of Neurology, Moscow, Russia.
Characteristic patterns of UV-induced skin autofluorescence were determined for patients with Parkinson's disease (PD) and associated with dysmetabolic alterations, such as nonenzymatic protein glycation, an increase in extracellular matrix stiffness, impaired metabolism of tissue fluorophores, mitochondrial dysfunction, and accumulation of aberrant proteins. Key differences in skin autofluorescence spectra were for the first time observed in PD, making it possible to discriminate between PD patients and healthy persons or individuals without signs of chronic neurodegeneration. Namely, skin fluorescence related to the reflected signal upon excitation with UV light at 375 nm was lower in PD patients.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Ophthalmology, The Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Excessive fibrosis is the primary factor for the failure of glaucoma drainage device (GDD) implantation. Thus, strategies to suppress scar formation in GDD implantation are crucial. Although it is known that in implanted medical devices, microscale modification of the implant surface can modulate cell behavior and reduce the incidence of fibrosis, in the field of ophthalmic implants, especially the modification and effects of hydrogel micropatterns have rarely been reported.
View Article and Find Full Text PDFThe GSAG:Ce scintillator represents a promising and cost-effective alternative to the expensive GGAG:Ce. Recent studies have attributed its low light yield to the thermal quenching effect. In this study, we employed the strategy of adding an yttrium (Y) admixture to the GSAG matrix to increase the thermal activation energy of thermal quenching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!