Screening the tryptophan (Trp)-dependent indole-3-acetic acid (IAA) production of different Azospirillum species revealed that A. irakense KA3 released 10 times less IAA into the medium than A. brasilense Sp7. A cosmid library of strain Sp7 was transferred into A. irakense KA3 with the aim of characterizing genes involved in IAA biosynthesis. Trp-dependent IAA production was increased in two transconjugants which both contained an identical 18.5 kb HindIII fragment from Sp7. After Tn5 mutagenesis, cosmids carrying Tn5 insertions at 36 different positions of the 18.5 kb fragment were isolated and transferred into strain KA3. IAA production by the recipient strains was screened by HPLC. The Tn5 insertions of 4 clones with decreased IAA production were mapped on a 2 kb SalI-SphI fragment. Recombination of Tn5 insertions at this locus into the genome of strain Sp7 led to Trp auxotrophic mutants. A 5.2 kb EcoRI-SalI fragment including the 2 kb SalI-SphI fragment was sequenced and six open reading frames were identified. Three of them were clustered and their deduced amino acid sequences showed significant similarity to TrpG, TrpD and TrpC, which are enzymes involved in tryptophan biosynthesis. One of the remaining open reading frames probably encodes an acetyltransferase. The region responsible for the enhanced Trp-dependent IAA production in strain KA3 corresponded to trpD, coding for the phosphoribosyl anthranilate transferase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00264211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!