A female infant developed apneic spells due to hypoglycemia at 73 hours of life. It was impossible to maintain the blood glucose level despite continuous intravenously given dextrose, cortisone, diazoxide, and a low-leucine diet. A subtotal pancreatectomy was performed but there was no evidence of islet cell adenoma. On second laparotomy, the head of the pancreas was removed, and on microscopic examination, islet cell adenomatosis was found. A good clinical recovery followed. Follow-up at age 3 years and 4 months shows apparently normal mental and physical development.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archpedi.1977.02120150092019DOI Listing

Publication Analysis

Top Keywords

islet cell
12
cell adenomatosis
8
neonatal hypoglycemia
4
hypoglycemia islet
4
adenomatosis successful
4
successful treatment
4
treatment total
4
total pancreatectomy
4
pancreatectomy female
4
female infant
4

Similar Publications

Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology.

Methods Cell Biol

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:

Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion.

View Article and Find Full Text PDF

Decoding the Contribution of IAPP Amyloid Aggregation to Beta Cell Dysfunction: A Systematic Review and Epistemic Meta-Analysis of Type 1 Diabetes.

Int J Mol Sci

January 2025

Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.

Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

A Therapeutic Approach of Chitosan-loaded p-Coumaric Acid Nanoparticles to Alleviate Diabetic Nephropathy in Wister Rats.

Curr Pharm Biotechnol

January 2025

Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul-02447, Republic of Korea.

Objective: This study evaluated the renoprotective effects of p-Coumaric acid nanoparticles (PCNPs) in nephropathic rats.

Methods: Six groups of male Albino Wistar rats were randomly assigned. Group 1 was the control, while Group 2 received 45 mg/kg of streptozotocin (STZ) to induce diabetic nephropathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!