AI Article Synopsis

  • The study determines the structure of nickel N,N'-piperazinebismethylenephosphonate (Ni-STA-12) in hydrated, partially dehydrated, and fully dehydrated forms using high-resolution synchrotron X-ray powder diffraction.
  • Both hydrated forms show similar frameworks, but the fully dehydrated form undergoes a symmetry change to triclinic due to structural rearrangement, leading to permanent porosity and distinct channel sizes.
  • The transformation involves changes in nickel coordination and significantly affects the material's vibrational and electronic properties, which are revealed through various spectroscopic studies; it also introduces unique adsorption sites for gases like H2, CO, and CO2.

Article Abstract

The structure of the nickel N,N'-piperazinebismethylenephosphonate, Ni-STA-12 (St. Andrews porous material-12), has been determined in the hydrated (Ni2L x 8 H2O, L = O3PCH2NC4H8NCH2PO3), partially dehydrated (Ni2L x 2 H2O), and fully dehydrated (Ni2L) forms from high-resolution synchrotron X-ray powder diffraction. The framework structures of Ni2L x 8 H2O and Ni2L x 2 H2O are almost identical (R, a = 27.8342(1) A, c = 6.2421(2) A; R, a = 27.9144(1) A, c = 6.1655(2) A) with additional physisorbed water of the as-prepared Ni-STA-12 present in an ordered hydrogen-bonded network in the channels. Ab initio structure solution of the fully dehydrated solid indicates it has changed symmetry to triclinic (P1, a = 6.03475(5) A, b = 14.9157(2) A, c = 16.1572(2) A, alpha = 112.5721(7) degrees, beta = 95.7025(11) degrees, gamma = 96.4950(11) degrees) as a result of a topotactic structural rearrangement. The fully dehydrated solid possesses permanent porosity with elliptical channels 8 A x 9 A in free diameter. The structural change results from the loss of water coordinated to the nickel cations, so that the nickel coordination changes from edge-sharing octahedral NiO5N to edge- and corner-sharing five-fold NiO4N. During this change, two out of three phosphonate groups rotate to become fully coordinated to nickel cations, leaving the remainder of the phosphonate groups coordinated to nickel cations by two oxygen atoms and with a P=O bond projecting into the channels. This transformation, which is completely reversible, causes substantial changes in both vibrational and electronic properties as shown by IR, Raman, and UV-visible spectroscopies. Complementary adsorption, calorimetric, and infrared studies of the probe adsorbates H2, CO, and CO2 reveal the presence of several distinct adsorption sites in the solid, which are attributed to their interactions with nickel cations which are weak Lewis acid sites, as well as with P=O groups that project into the pores. At 304 K, the adsorption isotherms and enthalpies of adsorption on dehydrated Ni-STA-12 have been measured for CO2 and CH4: Ni-STA-12 gives adsorption uptakes of CO2 of 2.5 mmol g(-1) at 1 bar, an uptake ca. 10 times that of CH4.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja804936zDOI Listing

Publication Analysis

Top Keywords

ni2l h2o
16
nickel cations
16
fully dehydrated
12
coordinated nickel
12
dehydrated ni2l
8
dehydrated solid
8
phosphonate groups
8
nickel
7
adsorption
6
ni-sta-12
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!