The RNA-binding protein Lark has an essential maternal role during Drosophila oogenesis. Elimination of maternal expression results in defects in cytoplasmic dumping and actin cytoskeletal organization in nurse cells. The function of this protein is dependent on the activity of one or more N-terminal RNA-binding domains. Here, we report the identification of Dmoesin (Dmoe) as a candidate RNA target of Lark during oogenesis. In addition to actin defects in the nurse cells of lark mutant ovaries, we observed mislocalization of posteriorly localized mRNAs including oskar and germ cell less in the developing oocyte. Anteriorly and dorsally localized mRNAs were not affected. In addition, we observed displacement of the actin cytoskeleton from the oocyte plasma membrane. These phenotypes are reminiscent of mutations in Dmoe and suggested that this RNA maybe a potential target of Lark. We observed a significant decrease in Dmoe protein associated with the membrane of the developing oocyte with no changes in expression or localization within the nurse cells. Evidence for an association between Lark protein and moe RNA during oogenesis comes from results of a microarray-based Ribonomics approach to identify Lark RNA targets. Thus, our results provide evidence that Dmoe RNA is a target of Lark during oogenesis and that it likely regulates either the splicing or translation of this RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00427-008-0260-xDOI Listing

Publication Analysis

Top Keywords

nurse cells
12
target lark
12
rna-binding protein
8
lark
8
protein lark
8
rna target
8
lark oogenesis
8
localized mrnas
8
developing oocyte
8
rna
6

Similar Publications

The action of retinoic acid on spermatogonia in the testis.

Curr Top Dev Biol

January 2025

School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:

For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.

View Article and Find Full Text PDF

Atherosclerosis is a complex multifactorial process that occurs in the vascular wall over many years and is responsible for a number of major diseases that affect quality of life and prognosis. A growing body of evidence supports the notion that immune mechanisms underlie atherogenesis. Macrophages are considered one of the key participants in atherogenesis, but their role in this process is multifaceted, which is largely due to the peculiarities of their cellular metabolism.

View Article and Find Full Text PDF

There are three Anopheles mosquito species in East Africa that are responsible for the majority of malaria transmission, posing a significant public health concern. Understanding the vector competence of different mosquito species is crucial for targeted and cost-effective malaria control strategies. This study investigated the vector competence of laboratory reared strains of East African An.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) cells receive several stimuli from surrounding cells, such as B-cell receptor (BCR) stimulation, and can manipulate their microenvironment via extracellular vesicle (EV) release. Here, we investigated the small RNA content (microRNA and YRNA) of CLL-EVs from leukemic cells cultured with/without BCR stimulation. We highlight an increase of miR-155-5p, miR-146a-5p, and miR-132-3p in EVs and in cells after BCR stimulation ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!