Purpose: To compare systemic intravenous and local intratracheal delivery of doxorubicin (DOX), antisense oligonucleotides (ASO) and small interfering RNA (siRNA).

Methods: "Neutral" and cationic liposomes were used to deliver DOX, ASO, and siRNA. Liposomes were characterized by dynamic light scattering, zeta-potential, and atomic force microscopy. Cellular internalization of DOX, ASO and siRNA was studied by confocal microscopy on human lung carcinoma cells. In vivo experiments were carried out on nude mice with an orthotopic model of human lung cancer.

Results: Liposomes provided for an efficient intracellular delivery of DOX, ASO, and siRNA in vitro. Intratracheal delivery of both types of liposomes in vivo led to higher peak concentrations and much longer retention of liposomes, DOX, ASO and siRNA in the lungs when compared with systemic administration. It was found that local intratracheal treatment of lung cancer with liposomal DOX was more efficient when compared with free and liposomal DOX delivered intravenously.

Conclusions: The present study outlined the clear advantages of local intratracheal delivery of liposomal drugs for the treatment of lung cancer when compared with systemic administration of the same drug.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-008-9755-4DOI Listing

Publication Analysis

Top Keywords

dox aso
16
aso sirna
16
local intratracheal
12
intratracheal delivery
12
antisense oligonucleotides
8
human lung
8
compared systemic
8
systemic administration
8
treatment lung
8
lung cancer
8

Similar Publications

A spatiotemporally controlled recombinant cccDNA mouse model for studying HBV and developing drugs against the virus.

Antiviral Res

August 2023

National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China. Electronic address:

Covalently closed circular (ccc) DNA is the template for hepatitis B virus (HBV) replication. The lack of small animal models for characterizing chronic HBV infection has hampered research progress in HBV pathogenesis and drug development. Here, we generated a spatiotemporally controlled recombinant cccDNA (rcccDNA) mouse model by combining Cre/loxP-mediated DNA recombination with the liver-specific "Tet-on/Cre" system.

View Article and Find Full Text PDF

Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs.

View Article and Find Full Text PDF

Spatio-Temporal Controlled Gene-Chemo Drug Delivery in a DNA Nanocomplex to Overcome Multidrug Resistance of Cancer Cells.

ACS Appl Bio Mater

August 2022

Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.

Multidrug resistance (MDR) in cancer cells is a substantial limitation to the success of chemotherapy. The spatio-temporal controlled gene-chemo therapeutics strategy is expected to surmount the limitation of MDR. We herein develop a DNA nanocomplex to achieve intrinsic stimuli-responsive spatio-temporal controlled gene-chemo drug delivery, overcoming MDR of cancer cells.

View Article and Find Full Text PDF

Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy.

Nanoscale

February 2022

Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.

Spherical nucleic acid (SNA), as a good gene delivery system, has a good application prospect for transdermal administration in skin disorder treatment. However, most of the traditional SNA core materials are non-degradable materials, so it is worthy of further research. Herein, we report a spherical nucleic acid based on poly-hyaluronic acid (PHA) for the co-delivery of a typical chemotherapeutic drug, doxorubicin (DOX), and an antisense oligonucleotide (ASO) against the tissue inhibitor of metalloproteinases 1 (TIMP-1) for the treatment of hypertrophic scars (HS) which are caused by abnormal fibroblast proliferation.

View Article and Find Full Text PDF

A telomerase-responsive nanoprobe with theranostic properties in tumor cells.

Talanta

August 2020

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China. Electronic address:

Multidrug resistance (MDR) is the main cause of treatment failure in clinical cancer chemotherapy due to the presence of P-glycoproteins (P-gp), which widely exist in stubborn drug-resistant tumor membranes and actively pump drugs from inside the tumor cell to the outside. In this study, we report a novel telomerase-responsive nanoprobe with theranostic properties for inhibiting P-gp expression and reversing MDR by gene silencing. This nanoprobe is composed of an AuNP assembled with telomerase primer, antisense oligonucleotide (ASO), and doxorubicin (Dox).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!