We report two-color two-dimensional Fourier transform electronic spectroscopy obtained using an acousto-optic pulse-shaper in a pump-probe geometry. The two-color setup will facilitate the study of energy transfer between electronic transitions that are widely separated in energy. We demonstrate the method at visible wavelengths on the laser dye LDS750 in acetonitrile. We discuss phase-cycling and polarization schemes to optimize the signal-to-noise ratio in the pump-probe geometry. We also demonstrate that phase-cycling can be used to separate rephasing and nonrephasing signal components.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.017420DOI Listing

Publication Analysis

Top Keywords

two-color two-dimensional
8
two-dimensional fourier
8
fourier transform
8
transform electronic
8
electronic spectroscopy
8
pump-probe geometry
8
spectroscopy pulse-shaper
4
pulse-shaper report
4
report two-color
4
spectroscopy acousto-optic
4

Similar Publications

Optical imaging access to nanometer-level protein distributions in intact tissue is a highly sought-after goal, as it would provide visualization in physiologically relevant contexts. Under the unfavorable signal-to-background conditions of increased absorption and scattering of the excitation and fluorescence light in the complex tissue sample, superresolution fluorescence microscopy methods are severely challenged in attaining precise localization of molecules. We reasoned that the typical use of a confocal detection pinhole in MINFLUX nanoscopy, suppressing background and providing optical sectioning, should facilitate the detection and resolution of single fluorophores even amid scattering and optically challenging tissue environments.

View Article and Find Full Text PDF

Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.

View Article and Find Full Text PDF

The linear energy transfer (LET) of proton therapy beams increases rapidly from the Bragg peak to the end of the beam. Although the LET can be determined using analytical or computational methods, a technique for efficiently measuring its spatial distribution has not yet been established. Thus, the purpose of this study is to develop a technique to measure the two-dimensional LET distribution in proton therapy in real time using a combination of multiple scintillators with different quenching.

View Article and Find Full Text PDF

Molecular Photothermal Effect on the 2D-IR Spectroscopy of Acetonitrile-Based Li-Ion Battery Electrolytes.

J Phys Chem Lett

July 2024

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea.

Advancements in Li-ion battery (LIB) technology hinge on an understanding of Li-ion solvation and charge transport dynamics. Ultrafast two-dimensional infrared (2D-IR) spectroscopy has been used to investigate these dynamics in electrolytes by probing chemical exchange processes through time-dependent cross-peak analysis. However, accurate interpretation is complicated by factors such as vibrational energy transfer and molecular photothermal effect (MPTE), affecting cross-peak evolution.

View Article and Find Full Text PDF

Measuring temperature in complex two-phase flows is crucial for understanding the dynamics of heat and mass transfer. In this Letter, we introduce a novel, to the best of our knowledge, optical approach based on the combination of two-photon laser-induced fluorescence (2p-LIF) imaging and two-color laser-induced fluorescence (2CLIF) for instantaneous temperature mapping of complex liquid media. Using Kiton Red (KR) and Rhodamine 560 (R560), a temperature sensitivity of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!