A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-beta. | LitMetric

AI Article Synopsis

  • The study investigated the long-term effects of estrogen following cardiac arrest and cardiopulmonary resuscitation (CA/CPR), focusing on brain injury and behavior.
  • The research showed that long-term estrogen administration significantly reduced neuronal injury in the striatum but not in the hippocampus.
  • The findings suggested that the neuroprotective effects of estrogen are primarily mediated through the estrogen receptor-beta (ER-beta), highlighting its potential therapeutic role after CA/CPR.

Article Abstract

We evaluated long-term administration of estrogen after cardiac arrest and cardiopulmonary resuscitation (CA/CPR) on neurohistopathological and behavioral outcome. We also examined the effect of estrogen receptor (ER) stimulation using ER-alpha agonist propyl pyrazole triol (PPT) and ER-beta agonist diarylpropionitrile (DPN) on neuronal survival after CA/CPR to determine whether possible neuroprotective effects of estrogen are ER-mediated. Male C57Bl/6 mice underwent 10 mins of CA/CPR and 3-day survival. In protocol 1, intravenous injection of vehicle (NaCl 0.9%) and 0.5 or 2.5 microg 17beta-estradiol (E2 loading dose) was performed followed by subcutaneous implants containing vehicle (oil) or E2 (12.6 microg), according to a treatment group. In experimental protocol 2, mice were injected (intravenously) with the ER-alpha agonist PPT or ER-beta agonist DPN followed by Alzet pump implants (subcutaneously) containing PPT (200 microg) or DPN (800 microg). Long-term E2 administration reduced neuronal injury in the striatum after administration of either loading dose (41%+/-19%, 35%+/-26% of injured neurons), as compared with vehicle (68%+/-7%, P<0.01), with no effect in the hippocampal CA1 field. In protocol 2, treatment with ER-beta agonist DPN reduced neuronal injury in the striatum (51%+/-13% injured neurons) as compared with ER-alpha agonist PPT (68%+/-10%) and vehicle (69%+/-11%; P<0.01). Estrogen receptor-beta agonist DPN reduced neuronal injury in the hippocampal CA1 field (29%+/-22% injured neurons) as compared with ER-alpha agonist PPT treatment (62%+/-33%; P<0.05). Injury was not different in hippocampal CA1 between vehicle and ER-alpha agonist-treated animals. We conclude that long-term E2 administration after CA/CPR is neuroprotective and that this effect is most likely mediated via ER-beta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682442PMC
http://dx.doi.org/10.1038/jcbfm.2008.116DOI Listing

Publication Analysis

Top Keywords

cardiac arrest
8
arrest cardiopulmonary
8
cardiopulmonary resuscitation
8
long-term administration
8
er-alpha agonist
8
ppt er-beta
8
er-beta agonist
8
loading dose
8
estradiol cardiac
4
resuscitation neuroprotective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!