Acinetobacter baumannii forms biofilms on abiotic surfaces, a phenotype that may explain its ability to survive in nosocomial environments and to cause device-related infections in compromised patients. The biofilm proficiency of the 19606 type strain depends on the production of pili, cell-surface appendages assembled via the CsuAB-A-B-C-D-E chaperone-usher secretion system. The screening of a bank of isogenic insertion derivatives led to the identification of a biofilm-deficient derivative in which a transposon insertion disrupted a gene predicted to encode the response regulator of a two-component regulatory system. This gene, which was named bfmR, is required for the expression of the Csu pili chaperone-usher assembly system. This coding region is followed by an ORF encoding a putative sensor kinase that was named bfmS, which plays a less relevant role in biofilm formation when cells are cultured in rich medium. Further examination showed that the bfmR mutant was capable of attaching to abiotic surfaces, although to levels significantly lower than those of the parental strain, when it was cultured in a chemically defined minimal medium. Additionally, the morphology of planktonic cells of this mutant, when grown in minimal medium, was drastically affected, while adherent mutant cells were indistinguishable in shape and size from the parental strain. Together, these results indicate that BfmR is part of a two-component regulatory system that plays an important role in the morphology of A. baumannii 19606 cells and their ability to form biofilms on abiotic surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.2008/019471-0 | DOI Listing |
Unlabelled: Bacterial genomic mutations in have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
The color of the rind is one of the most crucial agronomic characteristics of watermelon ( L.). Its genetic analysis was conducted to provide the identification of genes regulating rind color and improving the quality of watermelon appearance.
View Article and Find Full Text PDFACS Synth Biol
January 2025
National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China.
In mammals, Trimethylamine N-oxide (TMAO) is involved in various physiological processes, and is considered a biomarker for multiple diseases. As a natural molecule found in marine organisms, TMAO is also an important indicator of seafood freshness. In this study, a TMAO biosensor was developed in harnessing TorRST two-component system.
View Article and Find Full Text PDFJ Neurol
January 2025
John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle-upon-Tyne, UK.
PROPEL (ATB200-03; NCT03729362) compared the efficacy and safety of cipaglucosidase alfa plus miglustat (cipa + mig), a two-component therapy for late-onset Pompe disease (LOPD), versus alglucosidase alfa plus placebo (alg + pbo). The primary endpoint was change in 6-min walk distance (6MWD) from baseline to week 52. During PROPEL, COVID-19 interrupted some planned study visits and assessment windows, leading to delayed visits, make-up assessments for patients who missed ≥ 3 successive infusions before planned assessments at weeks 38 and 52, and some advanced visits (end-of-study/early-termination visits).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!