Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors.

Protein Eng Des Sel

Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

Published: March 2009

We have previously demonstrated preclinical in vivo targeting of prostate stem cell antigen (PSCA) using a humanized anti-PSCA 2B3 monoclonal antibody (mAb). However, humanization resulted in 5-fold loss of apparent affinity relative to the parental mAb (1 nM). In this study, diabodies (scFv dimers of 55 kDa) were generated from 2B3 including variants with different linker lengths as well as back-mutations to original murine residues to improve affinity. Parental 2B3 (p2B3) and back-mutated 2B3 (bm2B3) diabodies (Dbs) with five- or eight-amino acid linkers (p2B3-Db5, p2B3-Db8, bm2B3-Db5 and bm2B3-Db8) were evaluated for binding to PSCA by flow cytometry and affinities were determined by surface plasmon resonance. Back-mutation restored the affinity from 5.4 to 1.9 nM. Stability, evaluated by size exclusion, revealed that diabodies with eight-residue linkers existed as a mixture of dimeric and monomeric species at low concentrations (

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644405PMC
http://dx.doi.org/10.1093/protein/gzn055DOI Listing

Publication Analysis

Top Keywords

prostate stem
8
stem cell
8
engineered humanized
4
diabodies
4
humanized diabodies
4
diabodies micropet
4
micropet imaging
4
imaging prostate
4
cell antigen-expressing
4
antigen-expressing tumors
4

Similar Publications

Prostate cancer (PCa) is the most common malignant tumor of the male reproductive system. In this study, we establish an induced pluripotent stem cell (iPSC) line from a male diagnosed with PC. of This iPSCs line was generated from the peripheral blood mononuclear cells (PBMCs) using a non-integrated Sendai virus.

View Article and Find Full Text PDF

Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most common malignant tumor of the male reproductive system. In this study, we generated an induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells (PBMCs) of a 67-year-old male patient and diagnosed with PC. The established iPSCs were confirmed by flow cytometry and immunofluorescence.

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!