Introduction: Isoproterenol treatment of Brown Norway and Lewis rats (high and low plasma angiotensin-I-converting enzyme activity, respectively) results in similar cardiac hypertrophy but higher cardiac fibrosis in Brown Norway rats.
Materials And Methods: Rats were infused in vivo with isoproterenol for two or 10 days. Cardiac fibrosis and inflammation were evaluated histochemically. We measured the mRNAs of pro-fibrotic factors (transforming growth factor beta(1), endothelin-1) and pro-inflammatory factors (monocyte chemoattractant protein-1). In studies with cardiac fibroblasts incubated with isoproterenol in vitro , we measured cell proliferation, angiotensin-I-converting enzyme and matrix metalloprotease 2 activities and deposition of collagen type I and fibronectin.
Results: After treatment with isoproterenol for two days, there were large areas of myocardial injury and numerous inflammatory foci in the left ventricle, these being greater in Brown-Norway than in Lewis rats. After treatment with isoproterenol for 10 days, there were large areas of damage with extensive collagen deposition only in the left ventricle; both strains exhibited this damage which was, however, more severe in Brown-Norway than in Lewis rats. After treatment with isoproterenol for two, but not 10, days, greater amounts of monocyte chemoattractant protein-1 mRNA were found in Brown Norway than in Lewis rats. Cell proliferation, activities of angiotensin-I-converting enzyme and matrix metalloprotease 2, amounts of collagen type I and fibronectin were similar in cardiac fibroblasts from both strains; changes after isoproterenol (10 microM) were also similar in both strains.
Conclusion: We conclude that the greater cardiac fibrosis in Brown Norway rats treated with isoproterenol correlates with the early and higher expression of proinflammatory factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1470320308096408 | DOI Listing |
Cardiol Res Pract
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran.
Nondilated left ventricular cardiomyopathy (NDLVC) is a newly defined category of cardiomyopathy. We sought to evaluate and compare the phenotype of NDLVC with DCM using cardiac magnetic resonance (CMR) imaging and to investigate the prognostic significance of these conditions. One hundred and fifty patients suspected of having cardiomyopathy referred for CMR were recruited.
View Article and Find Full Text PDFJ Pathol
January 2025
Cardiorenal Translational Laboratory, Imas12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain.
Ischaemic heart disease (IHD) remains a major cause of death and morbidity. Klotho is a well-known anti-ageing factor with relevant cardioprotective actions, at least when renal dysfunction is present, but its actions are much less known when renal function is preserved. This study investigated Klotho as a biomarker and potential novel treatment of IHD-associated complications after myocardial infarction (MI) under preserved renal function.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
January 2025
Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. Electronic address:
Background: Patients after kidney transplantation (KTx) in childhood show a high prevalence of cardiac complications, but the underlying mechanism is still poorly understood. In adults, myocardial fibrosis detected in cardiac magnetic resonance (CMR) imaging is already an established risk factor. Data for children after KTx are not available.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Cardiology Department, Tulane University School of Medicine, New Orleans, Louisiana, United States. Electronic address:
Background: Causal machine learning (ML) provides an efficient way of identifying heterogeneous treatment effect groups from hundreds of possible combinations, especially for randomized trial data.
Objective: The aim of this paper is to illustrate the potential of applying causal ML on the DECAAF II trial data. We proposed a causal ML model to predict the treatment response heterogeneity.
Proc Natl Acad Sci U S A
January 2025
Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030.
Monocytes are critical in controlling tissue infections and inflammation. Monocyte dysfunction contributes to the inflammatory pathogenesis of cystic fibrosis (CF) caused by CF transmembrane conductance regulator (CFTR) mutations, making CF a clinically relevant disease model for studying the contribution of monocytes to inflammation. Although CF monocytes exhibited adhesion defects, the precise mechanism is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!