The aqueous solubility of nimesulide in the absence and presence of beta-cyclodextrin (beta-CD) and its alkyl derivatives hydroxypropyl-beta-CD and methyl-beta-CD was studied. We also investigated the effect of water-soluble polymers, hydroxypropylmethyl-cellulose, sodium-carboxymethyl-cellulose, polyvinylpyrrolidone and polyethyleneglycol on the solubilization efficacy and complexation ability of cyclodextrins with nimesulide. The solubility of nimesulide in the absence and presence of cyclodextrins and polymers was studied using a phase solubility technique combined with a spectrophotometric method. The study was carried out at 25 degrees C and pH values of 6.0 and 7.0. Conditions in terms of polymer concentration and polymer heating with and without sonication were optimized. Values of the solubility enhancement factor of nimesulide in the presence of each cyclodextrin and in the absence and presence of each polymer were determined and the formation constants, K, of the inclusion complexes formed calculated. beta-CDs increased the aqueous solubility of nimesulide in the following order: methyl-beta-CD > beta-CD > hydroxypropyl-beta-CD. Addition of hydroxypropylmethyl-cellulose at a concentration of 0.1% (w/v) had the greatest influence on complexation of all three beta-CDs with nimesulide, while preheating of the polymer at 70 degrees C under sonication resulted in an additional two-fold increase in the aqueous solubility of the drug. Sodium-carboxymethyl-cellulose, polyvinylpyrrolidone and polyethyleneglycol had minor effects on the aqueous solubility of nimesulide. Thus beta-CD, hydroxypropyl-beta-CD and methyl-beta-CD are proposed as good solubilizing agents for nimesulide in the presence and absence of hydroxypropylmethyl-cellulose in order to enhance its oral bioavailability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1211/jpp/60.11.0003 | DOI Listing |
Int J Biol Macromol
January 2025
College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea. Electronic address:
Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs.
View Article and Find Full Text PDFChemistry
January 2025
University of Toronto, Chemistry, 80 St George Street, M5S 3H6, Toronto, CANADA.
The synthesis of polyferrocenyldimethylsilane-b-poly(L-glutamic acid) block copolymers was systematically explored. Rod-like and plate-like micelles were prepared from self-assembly of the block copolymers in aqueous solution with two different approaches. In a dissolution-dialysis approach, micelles were prepared by dissolving a block copolymer sample in excess aqueous base followed by the dialysis of the solution against water.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Materials Science and Engineering Graduate Program, Faculty of Science, Mahidol University Bangkok 10400 Thailand
Triclosan (TCS) is used as an antibacterial agent in various products. One of the major issues associated with TCS is its limited solubility in aqueous media, which can reduce its effectiveness against bacteria. In this study, we enhanced the aqueous solubility and antibacterial activity of TCS by using a re-dispersible emulsion powder stabilized with gold nanoparticles (GNPs).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:
Combining polysaccharides with polypeptides enables growth of diverse nanostructures with minimal toxicity, low immune response, and potential biodegradability. However, examples of nanostructures combining polysaccharides with polypeptides are limited due to synthetic difficulties and related issues of solubility, purification, and characterization, with previous reports of polysaccharide-block-polypeptide block copolymers requiring methods such as polymer-polymer coupling and post-polymerization modifications paired with difficult purification steps. Here, we synthesized dextran-block-poly(benzyl glutamate) block copolymers in water via polymerization-induced self-assembly (PISA) to form nanostructures in situ, studying their morphologies using experimental methods and molecular modeling.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
There is an emerging quest for fabrication of water-soluble fluorescent silver nanoclusters (AgNCs) with long-lasting fluorescent properties and dimensional stability while being sustainable and functional. Thus, a well-known seed-mediated growth strategy has been developed to manufacture AgNCs supported onto carboxyl and aldehyde modified cellulose nanofiber (DATCNF) with ultra-small and intense fluorescence. The DATCNF acts as a reductant, template, and stabilizer while the protective ligand, 2-Mercaptonicotinic Acid (2-HMA), provides AgNCs with luminous characteristic and constrained size of 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!