The catalase-peroxidase (KatG) of Mycobacterium tuberculosis (Mtb) is important for the virulence of this pathogen and also is responsible for activation of isoniazid (INH), an antibiotic in use for over 50 years in the first line treatment against tuberculosis infection. Overexpressed Mtb KatG contains a heterogeneous population of heme species that present distinct spectroscopic properties and, as described here, functional properties. A six-coordinate (6-c) heme species that accumulates in the resting enzyme after purification is defined as a unique structure containing weakly associated water on the heme distal side. We present the unexpected finding that this form of the enzyme, generally present as a minority species along with five-coordinate (5-c) enzyme, is the favored reactant for ligand binding. The use of resting enzyme samples with different proportional composition of 5-c and 6-c forms, as well as the use of KatG mutants with replacements at residue 315 that have different tendencies to stabilize the 6-c form, allowed demonstration of more rapid cyanide binding and preferred peroxide binding to enzyme containing 6-c heme. Optical-stopped flow and equilibrium titrations of ferric KatG with potassium cyanide reveal complex behavior that depends in part on the amount of 6-c heme in the resting enzymes. Resonance Raman and low-temperature EPR spectroscopy clearly demonstrate favored ligand (cyanide or peroxide) binding to 6-c heme. The 5-c and 6-c enzyme forms are not in equilibrium on the time scale of the experiments. The results provide evidence for the likely participation of specific water molecule(s) in the first phases of the reaction mechanism of catalase-peroxidase enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi801511u | DOI Listing |
Int J Biol Macromol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China. Electronic address:
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.
View Article and Find Full Text PDFPLoS One
May 2024
Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom.
Latex clearing proteins (Lcps) catalyze the oxidative cleavage of the C = C bonds in cis-1,4-polyisoprene (natural rubber), producing oligomeric compounds that can be repurposed to other materials. The active catalytic site of Lcps is buried inside the protein structure, thus raising the question of how the large hydrophobic rubber chains can access the catalytic center. To improve our understanding of hydrophobic polymeric substrate binding to Lcps and subsequent catalysis, we investigated the interaction of a substrate model containing ten carbon-carbon double bonds with the structurally characterized LcpK30, using multiple computational tools.
View Article and Find Full Text PDFJ Biotechnol
March 2023
Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany. Electronic address:
Glycerol dehydrogenase (GldA) from Escherichia coli BW25113, naturally catalyzes the oxidation of glycerol to dihydroxyacetone. It is known that GldA exhibits promiscuity towards short-chain C-C alcohols. However, there are no reports regarding the substrate scope of GldA towards larger substrates.
View Article and Find Full Text PDFAntioxidants (Basel)
May 2021
Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
The secondary metabolites profiling of stem (NNSE) extract was carried out using a high-resolution mass spectroscopic technique. The antioxidant effects of NNSE, as well as the underlying mechanisms, were also investigated in tert-butyl hydroperoxide (-BHP)-stimulated oxidative stress in RAW264.7 cells.
View Article and Find Full Text PDFProtein Expr Purif
July 2021
IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico. Electronic address:
XanA is an Fe- and α-ketoglutarate-dependent enzyme responsible for the conversion of xanthine to uric acid. It is unique to fungi and it was first described in Aspergillus nidulans. In this work, we present the preliminary characterization of the XanA enzyme from Aspergillus oryzae, a relevant fungus in food production in Japan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!