Objective: To investigate the role of focal adhesion kinase (FAK) in cardiac hypertrophy induced by hypertension.

Methods: Using immunofluorescent labeling, confocal microscopy and Western blot, the expression and subcellular location of FAK-pSer722 and FAK-pSer910 were determined in cardiac myocytes of the left ventricles from 2, 6, 12, and 18 month-old spontaneously hypertensive heart failure (SHHF) rats and age-matched Wistar-Kyoto (WKY) control rats, respectively.

Results: There was no obvious difference in FAK-pSer722 and FAK-pSer910 expression between 2 month-old SHHF and WKY rats. In contrast with the control groups, the expression of FAK-pSer722 and FAK-pSer910 significantly increased in cardiac myocytes of the left ventricle, from 6, 12 and 18 month-old SHHF rats. Both FAK-pSer722 and FAK-pSer910 were translocated and acummulated in nuclei of cardiac myocytes from 6, 12, and 18 month-old SHHF rats.

Conclusion: Phosphorylation and translocation of serine 722 and serine 910 of phosphorylated FAK play an important role in the de-compensatory cardiac hypertrophy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cardiac myocytes
16
fak-pser722 fak-pser910
16
myocytes left
12
month-old shhf
12
translocation serine
8
serine 722
8
722 serine
8
serine 910
8
focal adhesion
8
adhesion kinase
8

Similar Publications

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Molecular Regulation of Cardiomyocyte Maturation.

Curr Cardiol Rep

January 2025

Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.

Purpose Of The Review: This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart.

Recent Findings: Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades.

View Article and Find Full Text PDF

Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) causes ischemic damage and cardiac remodeling that ultimately progresses into ischemic cardiomyopathy (ICM). Coronary revascularization reduces morbidity and mortality from an MI, however, reperfusion also induces oxidative stress that drives cardiac myocyte (CM) dysfunction and ICM. Oxidative stress in CMs leads to reactive oxygen species (ROS) production and mitochondrial damage.

View Article and Find Full Text PDF

Advances in cardiac organoid research: implications for cardiovascular disease treatment.

Cardiovasc Diabetol

January 2025

Department of Cardiology, The Affiliated Hospital, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Globally, cardiovascular diseases remain among the leading causes of mortality, highlighting the urgent need for innovative research models. Consequently, the development of accurate models that simulate cardiac function holds significant scientific and clinical value for both disease research and therapeutic interventions. Cardiac organoids, which are three-dimensional structures derived from the induced differentiation of stem cells, are particularly promising.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!