[Functional significance of heat shock protein 90].

Rev Invest Clin

Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan.

Published: February 2009

The heat shock protein 90 kDalpha (Hsp90) subfamily is constituted by five isoforms, among them Hsp90alpha and Hsp90beta are the more abundant cytosolic proteins. These two proteins are molecular chaperons that participate in numerous cellular processes, through interacting with more than 100 proteins known as client proteins of Hsp90. These client proteins include: transcriptional factors, kinase proteins and other proteins that participate in transcriptional and transductional regulation such as steroid hormone receptors and nitric oxide synthases. This review offers a retrospective in the recent information about molecular and cellular functions of Hsp90 in the vascular physiology. In addition, the studies that evaluate Hsp90 role in the renal physiology and pathophysiology are discussed. Finally, the molecular tools developed to manipulate the Hsp90 expression in vitro and in vivo, through its inhibition or over-expression are reviewed. All these studies together have allowed increasing our knowledge regarding the role of Hsp90 during normal and pathophysiological conditions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heat shock
8
shock protein
8
proteins proteins
8
client proteins
8
proteins
7
hsp90
6
[functional significance
4
significance heat
4
protein 90]
4
90] heat
4

Similar Publications

Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.

View Article and Find Full Text PDF

Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages.

BMC Genomics

January 2025

Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.

Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.

View Article and Find Full Text PDF

The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.

View Article and Find Full Text PDF

DNAJC15 is a mitochondrial TIMM23-related co-chaperonin known for its role in regulating oxidative phosphorylation efficiency, oxidative stress response and lipid metabolism. Recently, it has been proposed that the loss of DNAJC15 correlates with cisplatin (CDDP)-resistance onset in ovarian cancer (OC), suggesting this protein as a potential prognostic factor during OC progression. However, the molecular mechanisms through which DNAJC15 contributes to CDDP response remains poorly investigated.

View Article and Find Full Text PDF

Lack of thermal acclimation in multiple indices of climate vulnerability in bumblebees.

Proc Biol Sci

January 2025

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA 50010, USA.

Indices of climate vulnerability are used to predict species' vulnerability to climate change based on intrinsic physiological traits, such as thermal tolerance, thermal sensitivity and thermal acclimation, but rarely is the consistency among indices evaluated simultaneously. We compared the thermal physiology of queen bumblebees between a species experiencing local declines () and a species exhibiting continent-wide increases (). We conducted a multi-week acclimation experiment under simulated climate warming to measure critical thermal maximum (CT), critical thermal minimum (CT), the thermal sensitivity of metabolic rate and water loss rate and acclimation in each of these traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!