The multireference spin-orbit CI method is employed to calculate potential energy curves for the ground and low-lying excited states of the XeH+ cation. For the first time, the spin-orbit interaction is taken into account and electric dipole moments are computed for transitions to the states responsible for the first absorption continuum (A band) of XeH+. On this basis, the partial and total absorption spectra in this energy range are obtained. It is found that the A-band absorption is dominated by the spin-forbidden b3Pi0+ <-- X1sigma+ parallel transition, while perpendicular transitions to the B(1)Pi and b(3)Pi(1) states are significantly weaker. The Gamma(nu) branching ratio defined as the ratio of the Xe+(2P(1/2)) yield to the total yield of the Xe+ cations from the XeH+ photodissociation is calculated for the (42-80) x 10(3) spectral range. It is shown that Gamma(nu) increases smoothly from <0.2 in the red and blue tails of the band to its maximum of 0.92 in the middle of the band, at E approximately 51.4 x 10(3) cm(-1). The high Gamma(nu) values correspond to the predominant formation of the spin-excited Xe+(2P(1/2)) ions that may be used to obtain IR laser generation at the Xe+(2P(1/2) - 2P(3/2)) transition. The calculated XeH+ data are compared with those for the isovalent ArH+, KrH+, and HI systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b807078dDOI Listing

Publication Analysis

Top Keywords

spin-orbit configuration
4
configuration interaction
4
interaction study
4
study ultraviolet
4
ultraviolet photofragmentation
4
photofragmentation xeh+
4
xeh+ multireference
4
multireference spin-orbit
4
spin-orbit method
4
method employed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!