A task-specific ionic liquid containing a carboxylate group with the ability to dissolve metal oxide and organic ligands has been used as the solvent to prepare lanthanide complexes without the addition of extra solvent; thus a soft material with intense photoluminescence has been obtained by directly dissolving Eu(2)O(3), 2-thenoyltrifluoroacetone (TTA) and 1,10-phenanthroline (Phen) into the task-specific ionic liquid.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b810631bDOI Listing

Publication Analysis

Top Keywords

task-specific ionic
12
ionic liquid
12
soft material
8
material intense
8
intense photoluminescence
8
dissolving eu2o3
8
photoluminescence dissolving
4
eu2o3 organic
4
organic ligand
4
ligand task-specific
4

Similar Publications

The development of a novel multifunctional adsorbent for the sensitive detection and capture of antibiotic residues in environmental and food samples presents a significant challenge. In this study, we synthesized a pioneering nanocomposite, ILs@PC, by encapsulating task-specific ionic liquids (ILs) within nitrogen-doped porous carbon (PC) derived from metal-triazolate frameworks. This ILs@PC nanocomposite functions as a multifunctional adsorbent in dispersive solid-phase extraction (DSPE), enabling simultaneous sorptive removal, sensitive detection, and molecular sieve selection.

View Article and Find Full Text PDF

Sustainable technology in energy-related applications will be crucial in the coming decades. As a result, developing new materials for existing processes has presently arisen as a major research priority. Recently, Deep eutectic solvents (DESs) have been expected as low-cost task-specific solvents for zinc-air batteries (ZABs).

View Article and Find Full Text PDF

We synthesized and characterized a novel, task-specific ionic liquid for metal extraction with considerably reduced leaching behavior compared to similar, phosphonium-based ionic liquids. The synthesis involves the design of the novel compound [TOPP][PAM] featuring both a highly hydrophobic cation and a functional anion. The characterization of the novel ionic liquid confirmed the formation of the desired structure and sufficient purity.

View Article and Find Full Text PDF

A high-performance ionic liquid-based microextraction technique utilizing a task-specific imidazolium-based ionic liquid was employed for the analysis of paroxetine as a pharmaceutical pollutant at trace levels in some real environmental and biological samples. An ionic liquid, 3-(2-hydroxy-4-(isopropylamino)butyl)-1-methylimidazolium chloride, abbreviated to [Hibmim][Cl], was synthesized with a yield of 90.4%.

View Article and Find Full Text PDF

Studying ionic liquids (ILs) through computational methods is one of the ways to accelerate progress in the design of novel and potentially green materials optimized for task-specific applications. Therefore, it is essential to develop simple and cost-effective computational procedures that are able to replicate and predict experimental data. Among these, spectroscopic measurements are of particular relevance since they are often implicated in structure-property relationships, especially in the infrared spectral region, where characteristic absorption and scattering processes due to molecular vibrations are ultimately influenced by the surrounding environment in the condensed phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!