AI Article Synopsis

  • MMP-7 enhances colon cancer cell adhesion and metastasis by cleaving specific cell surface proteins.
  • Research shows that MMP-7 must bind to cholesterol sulfate (CS) on the cell surface for its activity.
  • Analysis of various mutant forms of MMP-7 identified key amino acids necessary for this binding, revealing that structural features on the molecule’s surface support its function in cancer cell aggregation.

Article Abstract

Matrix metalloproteinase-7 (MMP-7; matrilysin) induces homotypic adhesion of colon cancer cells by cleaving cell surface protein(s) and enhances their metastatic potential. Our previous study (Yamamoto, K., Higashi, S., Kioi, M., Tsunezumi, J., Honke, K., and Miyazaki, K. (2006) J. Biol. Chem. 281, 9170-9180) demonstrated that binding of MMP-7 to cell surface cholesterol sulfate (CS) is essential for the cell membrane-associated proteolytic action of the protease. To determine the region of MMP-7 essential for binding to CS, we constructed chimeric proteases consisting of various parts of MMP-7 and those of the catalytic domain of MMP-2; the latter protease does not have an affinity for CS. Studies of these chimeric proteases and other mutants of MMP-7 revealed that Ile29, Arg33, Arg51, and Trp55, in the internal sequence, and the C-terminal three residues corresponding to residues 171-173 of MMP-7 are essential for binding to CS. An MMP-7 mutant, which had the internal 4 residues at positions 29, 33, 51, and 55 of MMP-7 replaced with the corresponding residues of MMP-2 and the C-terminal 3 residues deleted, had essentially no affinity for CS. This mutant and wild-type MMP-7 showed similar proteolytic activity toward fibronectin, whereas the mutant lacked the ability to induce the colon cancer cell aggregation. In the three-dimensional structure of MMP-7, the residues essential for binding to CS are located on the molecular surface in the opposite side of the catalytic cleft of the protease. Therefore, it is assumed that the active site of MMP-7 bound to cell surface is directed outside. We speculate that the direction of the cell-bound MMP-7 makes it feasible for the protease to cleave its substrates on cell surface.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M806285200DOI Listing

Publication Analysis

Top Keywords

essential binding
16
cell surface
16
mmp-7
12
matrix metalloproteinase-7
8
cholesterol sulfate
8
colon cancer
8
binding mmp-7
8
mmp-7 essential
8
chimeric proteases
8
corresponding residues
8

Similar Publications

Automated and Efficient Sampling of Chemical Reaction Space.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Machine learning interatomic potentials (MLIPs) promise quantum-level accuracy at classical force field speeds, but their performance hinges on the quality and diversity of training data. An efficient and fully automated approach to sample chemical reaction space without relying on human intuition, addressing a critical gap in MLIP development is presented. The method combines the speed of tight-binding calculations with selective high-level refinement, generating diverse datasets that capture both equilibrium and reactive regions of potential energy surfaces.

View Article and Find Full Text PDF

Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.

View Article and Find Full Text PDF

Microenvironment Remodeling Microgel Repairs Degenerated Intervertebral Disc via Programmed Delivery of MicroRNA-155.

ACS Appl Mater Interfaces

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery.

View Article and Find Full Text PDF

C9ORF72 poly-PR induces TDP-43 nuclear condensation via NEAT1 and is modulated by HSP70 activity.

Cell Rep

January 2025

Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:

The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!