Glutaredoxins (GRXs) are small proteins with glutathione-dependent disulfide oxidoreductase activity involved in cellular defense against oxidative stress. This work reports the identification and characterization of the first glomeromycotan dithiol glutaredoxin gene from the fungus Glomus intraradices. The corresponding gene, named GintGRX1, shares high sequence similarity with previously described fungal GRXs. GintGRX1 contains the characteristic dithiol active site CPYC. By using a yeast expression system, we found that GintGRX1 encodes a multifunctional protein with oxidoreductase, peroxidase and glutathione S-transferase activity. GintGRX1 partially reverted sensitivity to superoxide radicals of the Deltagrx1Deltagrx2Saccharomyces cerevisiae strain. GintGRX1 was transcriptionally regulated by paraquat but not by hydrogen peroxide. Copper induced an accumulation of reactive oxygen species in the extraradical mycelium of G. intraradices and up-regulation of GintGRX1 transcript levels. These data suggest a role for GintGRX1 in protecting the fungus against the oxidative damage induced directly by the superoxide anion or indirectly by copper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2008.09.013 | DOI Listing |
Plant Biol (Stuttg)
May 2021
Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
With continued climate changes, soil drought stress has become the main limiting factor for crop growth in arid and semi-arid regions. A typical characteristic of drought stress is the burst of reactive oxygen species (ROS), causing oxidative damage. Plant-associated microbes, such as arbuscular mycorrhizal fungi (AMF), can regulate physiological and molecular responses to tolerate drought stress, and they have a strong ability to cope with drought-induced oxidative damage via enhanced antioxidant defence systems.
View Article and Find Full Text PDFPLoS One
July 2016
Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
Glutaredoxins (GRXs) are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1), were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6) contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1.
View Article and Find Full Text PDFFungal Genet Biol
January 2009
Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada 18008, Spain.
Glutaredoxins (GRXs) are small proteins with glutathione-dependent disulfide oxidoreductase activity involved in cellular defense against oxidative stress. This work reports the identification and characterization of the first glomeromycotan dithiol glutaredoxin gene from the fungus Glomus intraradices. The corresponding gene, named GintGRX1, shares high sequence similarity with previously described fungal GRXs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!