Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although previous studies have found that cerebral white matter hyperintensities are associated with balance-gait disorders, no proton magnetic resonance spectroscopy data at the plane of the basal ganglia have been published. We investigated a possible relationship between balance performance and brain metabolite ratios or structural MRI measurements. We also included neuropsychological tests to determine whether such tests are related to structural or metabolic findings. All 80 participants were taken from the cohort of the Three-City study (Dijon-Bordeaux-Montpellier, France). The ratios of N-acetyl-aspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) were calculated in the basal ganglia, thalami and insular cortex. We used univariate regression to identify which variables predicted changes in NAA/Cr and Cho/Cr, and completed the analysis with a multiple linear or logistic regression. After the multivariate analysis including hypertension, age, balance-gait, sex, white matter lesions, brain atrophy and body mass index, only balance-gait performance remained statistically significant for NAA/Cr (p=0.01) and for deep white-matter lesions (p=0.02). The Trail-Making Test is independently associated with brain atrophy and periventricular white-matter hyperintensities. Neuronal and axonal integrity at the plane of the basal ganglia is associated with balance and gait in the elderly, whereas brain flexibility is associated with structural MRI brain abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jocn.2008.01.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!