Multiple phage-based magnetoelastic (ME) biosensors were simultaneously monitored for the detection of different biological pathogens that were sequentially introduced to the measurement system. The biosensors were formed by immobilizing phage and 1mg/ml BSA (blocking agent) onto the magnetoelastic resonator's surface. The detection system included a reference sensor as a control, an E2 phage-coated sensor specific to S. typhimurium, and a JRB7 phage-coated sensor specific to B. anthracis spores. The sensors were free standing during the test, being held in place by a magnetic field. Upon sequential exposure to single pathogenic solutions, only the biosensor coated with the corresponding specific phage responded. As the cells/spores were captured by the specific phage-coated sensor, the mass of the sensor increased, resulting in a decrease in the sensor's resonance frequency. Additionally, non-specific binding was effectively eliminated by BSA blocking and was verified by the reference sensor, which showed no frequency shift. Scanning electron microscopy was used to visually verify the interaction of each biosensor with its target analyte. The results demonstrate that multiple magnetoelastic sensors may be simultaneously monitored to detect specifically targeted pathogenic species with good selectivity. This research is the first stage of an ongoing effort to simultaneously detect the presence of multiple pathogens in a complex analyte.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2008.09.006DOI Listing

Publication Analysis

Top Keywords

phage-coated sensor
12
anthracis spores
8
magnetoelastic biosensors
8
simultaneously monitored
8
bsa blocking
8
reference sensor
8
sensor specific
8
sensor
6
sequential detection
4
detection salmonella
4

Similar Publications

The genetically engineered M13 bacteriophage (M13 phage), developed via directed evolutionary screening process, can improve the sensitivity of sensors because of its selective binding to a target material. Herein, we propose a screening method to develop a selective and sensitive bioreporter for toxic material based on genetically engineered M13 phage. The paraquat (PQ)-binding M13 phage, developed by directed evolution, was used.

View Article and Find Full Text PDF

This article presents rapid, sensitive, direct detection of Salmonella Typhimurium on eggshells by using wireless magnetoelastic (ME) biosensors. The biosensor consists of a freestanding, strip-shaped ME resonator as the signal transducer and the E2 phage as the biomolecular recognition element that selectively binds with Salmonella Typhimurium. This ME biosensor is a type of mass-sensitive biosensor that can be wirelessly actuated into mechanical resonance by an externally applied timevarying magnetic field.

View Article and Find Full Text PDF

Multiple phage-based magnetoelastic (ME) biosensors were simultaneously monitored for the detection of different biological pathogens that were sequentially introduced to the measurement system. The biosensors were formed by immobilizing phage and 1mg/ml BSA (blocking agent) onto the magnetoelastic resonator's surface. The detection system included a reference sensor as a control, an E2 phage-coated sensor specific to S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!