Role of NF-kappaB in hematopoietic niche function of osteoblasts after radiation injury.

Exp Hematol

Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889-5603, USA.

Published: January 2009

Objective: Hematopoietic tissue is very sensitive to ionizing radiation (IR). In adult mammalian bone marrow, hematopoietic stem and progenitor cells (HSPC) reside next to the endosteal bone surface, which is lined primarily by osteoblastic cells. In the present study, we proposed to investigate the mechanisms by which osteoblasts in the hematopoietic niche regulate survival, proliferation, and differentiation of HSPC after radiation injury.

Materials And Methods: Human primary CD34+ HSPC were cultured with human fetal osteoblast (hFOB) cell line cells or conditioned medium (CM) from hFOB cells with or without irradiation. Survival, apoptosis, and cell cycle were analyzed using clonogenic and flow cytometric assays. Cytokine and chemokine expression were measured by cytokine array and enzyme-linked immunosorbent assay. Their regulatory activities were assessed by quantitative real-time polymerase chain reaction, small interfering (si)RNA transfection, immunoblotting, and transbinding assays.

Results: Survival of gamma-irradiated CD34+ HSPC was significantly enhanced by coculture with hFOB cells or by CM from hFOB cells. There were six factors in hFOB cell lysates and five factors released into hFOB CM enhanced by IR. IR induced phosphorylation of p53, c-Jun, and p38 and downstream p21 expression, as well as cell cycle arrest and apoptosis in hFOB cells. However, IR also induced phosphorylation of nuclear factor (NF)-kappaBp65 (ser536) and NF-kappaB activation in hFOB cells. Inhibition of NF-kappaB expression with siRNA upregulated p21, inhibited release of cytokines and chemokines, and induced hFOB and CD34+ cell apoptosis.

Conclusions: NF-kappaB is a radiation-induced prosurvival factor in human osteoblastic cells. NF-kappaB gene knockdown abrogated the hematopoietic niche function of hFOB cells in supporting survival of CD34+ cells after IR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2008.09.001DOI Listing

Publication Analysis

Top Keywords

hfob cells
24
hematopoietic niche
12
cells
11
hfob
10
niche function
8
osteoblastic cells
8
cd34+ hspc
8
hfob cell
8
cell cycle
8
induced phosphorylation
8

Similar Publications

Animal Posters.

In Vitro Cell Dev Biol Anim

September 2024

A-1008Cadmium Affects Expression of Several microRNAs That Regulate the Wnt-beta Catenin Pathway in the hFOB 1.19 Osteoblast Cell Line. MICHAEL J.

View Article and Find Full Text PDF

GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells.

Eur J Cell Biol

December 2024

Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy. Electronic address:

Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro.

View Article and Find Full Text PDF

: A biocomposite based on magnesium-doped hydroxyapatite and enriched with amoxicillin (MgHApOx) was synthesized using the coprecipitation method and is presented here for the first time. : The stability of MgHAp and MgHApOx suspensions was evaluated by ultrasound measurements. The structure of the synthesized MgHAp and MgHApOx was examined with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

The Potential of Enamel Matrix Derivative in Countering Bisphosphonate-Induced Effects in Osteoblasts.

Life (Basel)

August 2024

Department of Oral & Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea.

The suppressive effect of bisphosphonates (BPs) on bone metabolism is considered to be a major cause of medication-related osteonecrosis of the jaw (MRONJ). Enamel matrix derivative (EMD) stimulates and activates growth factors, leading to the regeneration of periodontal tissues. In this study, we aimed to explore the potential of EMD in reversing the detrimental effects of BPs on human fetal osteoblasts (hFOBs) and osteosarcoma-derived immature osteoblasts (MG63s) by assessing cell viability, apoptosis, migration, gene expression, and protein synthesis.

View Article and Find Full Text PDF

In this paper, we present for the first time the development of zinc-doped hydroxyapatite enriched with tetracycline (ZnHApTe) powders and provide a comprehensive evaluation of their physico-chemical and biological properties. Various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used for the sample's complex evaluation. Moreover, the biocompatibility of zinc-doped hydroxyapatite (ZnHAp) and ZnHApTe nanoparticles was evaluated with the aid of human fetal osteoblastic cells (hFOB 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!