The morphological characteristics of 35 wild plant species were studied after freezing of seeds under the conditions of deep, fast, and programmed freezing (-196 degrees C) and non-deep freezing (-10 degrees C). The seeds were stored frozen for a month. The seeds of all the species were characterized by a low humidity. The field and laboratory seed germination capacity, leaf growth, the quantity and length of shoots, the quantity of generative organs, and the variability of these characteristics were studied. It was shown that the direction of changes under different cooling conditions was the same except for the laboratory germination capacity of some species. The direction was determined by the species features rather than cooling conditions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

germination capacity
8
cooling conditions
8
[on similarity
4
similarity effects
4
effects cryopreservation
4
conditions
4
cryopreservation conditions
4
conditions growth
4
growth development
4
development plants]
4

Similar Publications

Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.

View Article and Find Full Text PDF

Effects of Seed Colour and Regulated Temperature on the Germination of Chiov.: An Endemic Gum- and Resin-Bearing Species.

Plants (Basel)

December 2024

Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.

(1) Background: According to the IUCN, is classified as a vulnerable species. However, knowledge of its seed characteristics and germination behaviour is lacking. (2) Methods: The aim of this research was to characterise the seeds and evaluate the effects of seed colour and controlled temperatures on seed germination.

View Article and Find Full Text PDF

Influence of Seed Disinfection Treatments on the Germination Rate and Histamine-Degrading Activity of Legume Sprouts.

Foods

December 2024

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Campus de l'Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.

Edible legume sprouts have been proposed as a promising plant-based source of the enzyme diamine oxidase (DAO), which plays a key role in degrading histamine at an intestinal level and preventing the development of histamine intolerance symptoms. However, the temperature and humidity conditions required for seed germination can also favor the rapid growth of yeast and mold, potentially compromising sprout yield and quality. The aim of this study was to evaluate the influence of different seed disinfection treatments on both the germination rate and DAO enzymatic activity in sprouts of four species.

View Article and Find Full Text PDF

Wolfberry () is a vital economic tree species in northwest China, but root rot caused by occurs frequently, which seriously endangers the quality and yield of wolfberry. In this study, potato glycoside alkaloids (PGAs), a plant-derived active substance, were used as materials to explore its inhibitory effect on . By analyzing the changes of reactive oxygen species (ROS) level, antioxidant capacity, and apoptosis, the role of PGAs-mediated oxidative stress in inducing apoptosis of was revealed.

View Article and Find Full Text PDF

Integrated removal of chromium, lead, and cadmium using nano-zero-valent iron-supported biochar: Mechanistic insights and eco-toxicity assessment.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China. Electronic address:

The contamination of water and soil by heavy metals (HMs) is a global issue that should be given much more concern. Modified nano-zero-valent iron (nZVI) composites offer an effective strategy for HMs remediation, but few studies have focused on removing coexisting HMs and the eco-toxicity of the composite. In this study, corn straw biochar-supported nZVI composites (nZVI-BC) were synthesized, characterized and used for the removal of Cr, Pb, and Cd in single and multi-system at different composites dosages, metal concentrations, and solution pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!