The aim of our study was to investigate the role of dopaminergic system in telencephalic and diencephalic brain regions of vertebrates in sleep-wakefulness cycle. The level of thyrosine-hydroxylase--the main enzyme in dopamine synthesis--was measured in striatum, zona inserta supraoptic and arcuate nuclea of hypothalamus in fish (Acipenceridae) and in mammals (rats) in ontogenesis (14-, 30-day old rats and adult animals) under tactile and sleep deprivation stresses. The thyrosine-hydroxylase-immunoreactive cells were revealed in all brain regions of fishes after a short-term stress. In the group after longtime stress, the thyrosine-hydroxylase-immunoreactive cells and fibers were almost absent in anterior brain but were found in hypothalamic nuclea. At 14-day old rats, 2-hour sleep deprivation caused increasing of thyrosine-hydroxylase-immunoreactivity both in fibers of caudate nucleus as well as in cells of the zona inserta. A 6-hour deprivation caused increasing of thyrosine-hydroxylase-immunoreactive material level in cells of zona inserta and decreasing it in fibers of 30-day old rats. In adult rats, the level of thyrosine-hydroxylase-immunoreactive material decreased in nucleus arcuatus and zona inserta after sleep deprivation and increased after sleep. Data obtained are discussed in terms ofphylo- and ontogenetic development of neurosecretory and neurotransmitter functions of dopaminergic system in evolutionary old diencephalic and evolutionary young telencephalic brain regions of vertebrates, which are the important systems of starting and maintenance of some functional conditions of the organism in sleep-wakefulness cycle.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brain regions
16
zona inserta
16
regions vertebrates
12
sleep-wakefulness cycle
12
sleep deprivation
12
system telencephalic
8
telencephalic diencephalic
8
diencephalic brain
8
vertebrates sleep-wakefulness
8
dopaminergic system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!