A simple numerical procedure is presented for the problem of estimating the parameters of models for the distribution of eggs oviposited in a host. The modelling is extended to incorporate both host density and time dependence to produce a remarkably parsimonious structure with only seven parameters to describe a data set of over 3,000 observations. This is further refined using a mixed model to accommodate several large outliers. Both models show that the level of superparasitism declines with increasing host density, and the rate declines over time. It is proposed that the differing behaviours represented by the mixed model may reflect a balance between behavioural strategies of different selective benefit.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10441-008-9063-8DOI Listing

Publication Analysis

Top Keywords

host density
12
mixed model
8
egg distributions
4
distributions insect
4
insect parasitoids
4
parasitoids modelling
4
modelling analysis
4
analysis temporal
4
temporal data
4
host
4

Similar Publications

Changes in miRNA Pattern Expression Associated With COVID-19 Severity.

In Vivo

December 2024

Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Toluca de Lerdo, Mexico

Background/aim: Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, manifests a wide range of clinical symptoms ranging from mild to moderate and severe. Host-related factors influence the course of SARS-CoV-2 infection; for instance, the expression of host microRNAs (miRNAs) could influence the progression and complications of COVID-19. This study aimed to determine the expression pattern of endogenous miRNAs in 80 severe COVID-19 patients compared to a group of healthy individuals.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.

View Article and Find Full Text PDF

Background: The Anopheles funestus group includes at least 11 sibling species, with Anopheles funestus Giles being the most studied and significant malaria vector. Other species, like Anopheles parensis, are understudied despite their potential role in transmission. This article provides insights into the biology and insecticide susceptibility of An.

View Article and Find Full Text PDF

The role of third component in coumarin-based all-small-molecule ternary organic solar cells with non-fullerene acceptor based on molecular stacking.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:

The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).

View Article and Find Full Text PDF

A Three-Dimensional, Flexible Conductive Network Based on an MXene/Rubber Composite for Lithium Metal Anodes.

ACS Appl Mater Interfaces

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China.

Flexibility enhancement is a pressing issue in the current development of advanced lithium-metal battery applications. Many types of organic polymers are inherently flexible, which can form a composite structure enhancing electrode flexibility. However, organic polymers have a negative influence on the plating and stripping of lithium-metal anodes, and the large number of polymers block the pore of the material, reducing the utilization of the active site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!