Purification and gene cloning of alpha-methylserine aldolase from Ralstonia sp. strain AJ110405 and application of the enzyme in the synthesis of alpha-methyl-L-serine.

Appl Environ Microbiol

Aminoscience Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.

Published: December 2008

By screening microorganisms that are capable of assimilating alpha-methyl-DL-serine, we detected alpha-methylserine aldolase in Ralstonia sp. strain AJ110405, Variovorax paradoxus AJ110406, and Bosea sp. strain AJ110407. A homogeneous form of this enzyme was purified from Ralstonia sp. strain AJ110405, and the gene encoding the enzyme was cloned and expressed in Escherichia coli. The enzyme appeared to be a homodimer consisting of identical subunits, and its molecular mass was found to be 47 kDa. It contained 0.7 to 0.8 mol of pyridoxal 5'-phosphate per mol of subunit and could catalyze the interconversion of alpha-methyl-L-serine to L-alanine and formaldehyde in the absence of tetrahydrofolate. Formaldehyde was generated from alpha-methyl-L-serine but not from alpha-methyl-D-serine, L-serine, or D-serine. Alpha-methyl-L-serine synthesis activity was detected when L-alanine was used as the substrate. In contrast, no activity was detected when D-alanine was used as the substrate. In the alpha-methyl-L-serine synthesis reaction, the enzymatic activity was inhibited by an excess amount of formaldehyde, which was one of the substrates. We used cells of E. coli as a whole-cell catalyst to express the gene encoding alpha-methylserine aldolase and effectively obtained a high yield of optically pure alpha-methyl-L-serine using L-alanine and formaldehyde.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607184PMC
http://dx.doi.org/10.1128/AEM.00677-08DOI Listing

Publication Analysis

Top Keywords

alpha-methylserine aldolase
12
ralstonia strain
12
strain aj110405
12
aldolase ralstonia
8
gene encoding
8
alpha-methyl-l-serine l-alanine
8
l-alanine formaldehyde
8
alpha-methyl-l-serine synthesis
8
activity detected
8
alpha-methyl-l-serine
6

Similar Publications

β-Hydroxy-α-amino acids (β-HAAs) have extensive applications in the pharmaceutical, chemical synthesis, and food industries. The development of synthetic methodologies aimed at producing optically pure β-HAAs has been driven by practical applications. Among the various synthetic methods, biocatalytic asymmetric synthesis is considered a sustainable approach due to its capacity to generate two stereogenic centers from simple prochiral precursors in a single step.

View Article and Find Full Text PDF

By screening microorganisms that are capable of assimilating alpha-methyl-DL-serine, we detected alpha-methylserine aldolase in Ralstonia sp. strain AJ110405, Variovorax paradoxus AJ110406, and Bosea sp. strain AJ110407.

View Article and Find Full Text PDF

The alpha-methylserine aldolase gene from Variovorax paradoxus strains AJ110406, NBRC15149, and NBRC15150 was cloned and expressed in Escherichia coli. Formaldehyde release activity from alpha-methyl-L-serine was detected in the cell-free extract of E.coli expressing the gene from three strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!