In Escherichia coli, the gcvB gene encodes a nontranslated RNA (referred to as GcvB) that regulates OppA and DppA, two periplasmic binding proteins for the oligopeptide and dipeptide transport systems. An additional regulatory target of GcvB, sstT, was found by microarray analysis of RNA isolated from a wild-type strain and a gcvB deletion strain grown to mid-log phase in Luria-Bertani broth. The SstT protein functions to transport L-serine and L-threonine by sodium transport into the cell. Reverse transcription-PCR and translational fusions confirmed that GcvB negatively regulates sstT mRNA levels in cells grown in Luria-Bertani broth. A series of transcriptional fusions identified a region of sstT mRNA upstream of the ribosome binding site needed for negative regulation by GcvB. Analysis of the GcvB RNA identified a sequence complementary to this region of the sstT mRNA. The region of GcvB complementary to sstT mRNA is the same region of GcvB identified to regulate the dppA and oppA mRNAs. Mutations predicted to disrupt base pairing between sstT mRNA and GcvB were made in gcvB, which resulted in the identification of a small region of GcvB necessary for negative regulation of sstT-lacZ. Additionally, the RNA chaperone protein Hfq was found to be necessary for GcvB to negatively regulate sstT-lacZ in Luria-Bertani broth and glucose minimal medium supplemented with glycine. The sstT mRNA is the first target found to be regulated by GcvB in glucose minimal medium supplemented with glycine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612445 | PMC |
http://dx.doi.org/10.1128/JB.00915-08 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!