Smad7 is required for the development and function of the heart.

J Biol Chem

Department of Medical and Molecular Genetics, Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Division of Pediatric Cardiology, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and the Walther Cancer Institute, Indianapolis, Indiana 46202, the Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and the Department of Medicine, University of California San Diego, La Jolla, California 92093. Electronic address:

Published: January 2009

Transforming growth factor-beta (TGF-beta) family members, including TGF-betas, activins, and bone morphogenetic proteins, exert diverse biological activities in cell proliferation, differentiation, apoptosis, embryonic development, and many other processes. These effects are largely mediated by Smad proteins. Smad7 is a negative regulator for the signaling of TGF-beta family members. Dysregulation of Smad7 is associated with pathogenesis of a variety of human diseases. However, the in vivo physiological roles of Smad7 have not been elucidated due to the lack of a mouse model with significant loss of Smad7 function. Here we report generation and initial characterization of Smad7 mutant mice with targeted deletion of the indispensable MH2 domain. The majority of Smad7 mutant mice died in utero due to multiple defects in cardiovascular development, including ventricular septal defect and non-compaction, as well as outflow tract malformation. The surviving adult Smad7 mutant mice had impaired cardiac functions and severe arrhythmia. Further analyses suggest that Smad2/3 phosphorylation was elevated in atrioventricular cushion in the heart of Smad7 mutant mice, accompanied by increased apoptosis in this region. Taken together, these observations pinpoint an important role of Smad7 in the development and function of the mouse heart in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610499PMC
http://dx.doi.org/10.1074/jbc.M807233200DOI Listing

Publication Analysis

Top Keywords

smad7 mutant
16
mutant mice
16
smad7
10
development function
8
tgf-beta family
8
family members
8
smad7 required
4
development
4
required development
4
function heart
4

Similar Publications

NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression.

Nat Commun

January 2025

State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.

Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport.

View Article and Find Full Text PDF

Background: Postoperative cognitive dysfunction (POCD) is a common neurological complication following anesthesia and surgery. Increasing evidence has demonstrated that neuroinflammation caused by systemic inflammatory responses during the perioperative period is a key factor in the occurrence of POCD. In addition, SMAD family member 7 (Smad7) has been confirmed to play vital roles in the pathogenesis and treatment of inflammatory diseases, such as inflammatory bowel disease.

View Article and Find Full Text PDF

Targeting of Smad7 in Mesenchymal Cells Does Not Exacerbate Fibrosis During Experimental Chronic Pancreatitis.

Pancreas

March 2022

From the Pancreas Cancer Research (PaCaRes) Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.

Objectives: Transforming growth factor-β (TGF-β)-mediated accumulation of extracellular matrix proteins such as collagen I is a common feature of fibrosis. Pancreatic stellate cells play an integral role in the pathogenesis of pancreatitis, and their profibrotic ability is mainly mediated by TGF-β signaling. To specifically address the role of fibrogenic cells in experimental pancreatic fibrosis, we deleted Smad7, the main feedback inhibitor of TGF-β signaling in this cell type in mice.

View Article and Find Full Text PDF

PNPLA3 downregulation exacerbates the fibrotic response in human hepatic stellate cells.

PLoS One

January 2022

Cardiovascular & Metabolism, Janssen Pharmaceuticals, Spring House, PA, United States of America.

Non-alcoholic steatohepatitis (NASH) results, in part, from the interaction of metabolic derangements with predisposing genetic variants, leading to liver-related complications and mortality. The strongest genetic determinant is a highly prevalent missense variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3 p.I148M).

View Article and Find Full Text PDF

Apigenin suppresses TGF-β1-induced cardiac fibroblast differentiation and collagen synthesis through the downregulation of HIF-1α expression by miR-122-5p.

Phytomedicine

March 2021

Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China. Electronic address:

Background: Apigenin can reduce cardiomyocyte hypertrophy by downregulating hypoxia inducible factor-1 alpha (HIF-1α) expression. However, its effects on cardiac fibroblasts (CFs) and its exact inhibitory molecular mechanisms on HIF-1α remain unclear.

Purpose: This study aims to examine the effects of apigenin on cell proliferation and differentiation, microRNA-122-5p (miR-122-5p) expression, and HIF-1α-mediated Smad signaling pathway in transforming growth factor beta 1 (TGF-β1)-stimulated CFs and cardiac fibrosis and to investigate the relationship between miR-122-5p and HIF-1α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!