In this review, we summarize the work published over the last few years relative to cellular immunological hurdles encountered specifically in pig-to-primate xenotransplantation models. The works summarized here cover both the innate and adaptative cellular immune response as well as strategies to overcome them and consequently prevent xenograft rejection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trim.2008.10.006DOI Listing

Publication Analysis

Top Keywords

cellular immunological
8
immunological hurdles
8
pig-to-primate xenotransplantation
8
current cellular
4
hurdles pig-to-primate
4
xenotransplantation review
4
review summarize
4
summarize work
4
work published
4
published years
4

Similar Publications

The ability to reliably induce bovine digital dermatitis (DD) in naive calves provides unique opportunities to evaluate immune responses of the calves to infection after disease induction, during healing, and after subsequent re-infection. Dairy calves infected in a previous induction trial were held until lesions resolved and were then re-infected in parallel with naïve calves. Humoral and cell-mediated responses were assessed via serum antibody titer and lymphocyte proliferation analysis with responses of previously infected calves compared with responses of the newly infected calves and naïve calves.

View Article and Find Full Text PDF

Ferroptosis and autophagy are closely associated with Alzheimer's disease (AD). Elevated ferric ion levels can induce oxidative stress and chronic inflammatory responses, resulting in brain tissue damage and further neurological cell damage. Autophagy in Alzheimer's has a dual role.

View Article and Find Full Text PDF

A new human autologous hepatocyte/macrophage co-culture system that mimics drug-induced liver injury-like inflammation.

Arch Toxicol

December 2024

Department of Hepatobiliary Surgery and Visceral Transplantation, Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, Leipzig, Germany.

The development of in vitro hepatocyte cell culture systems is crucial for investigating drug-induced liver injury (DILI). One prerequisite for monitoring DILI related immunologic reactions is the extension of primary human hepatocyte (PHH) cultures towards the inclusion of macrophages. Therefore, we developed and characterized an autologous co-culture system of PHH and primary human hepatic macrophages (hepM) (CoC1).

View Article and Find Full Text PDF

Regulation of autophagy and cellular signaling through non-histone protein methylation.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China; Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China. Electronic address:

Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes.

View Article and Find Full Text PDF

Structural analysis and immunological activity of a novel low molecular weight neutral polysaccharide isolated from Hemerocallis citrina Borani.

Food Chem

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

A novel neutral water-soluble polysaccharide (HCBP1-1) was isolated and purified from Hemerocallis citrina Borani by column chromatography. The fine structure of HCBP1-1 was determined by a series of physical and chemical means. HCBP1-1 was a homogeneous low molecular weight polysaccharide of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!