The three-dimensional structure of the outer membrane protein A from Klebsiella pneumoniae transmembrane domain was determined by NMR.This protein induces specific humoral and cytotoxic responses, and is a potent carrier protein. This is one of the largest integral membrane proteins(210 residues) for which nearly complete resonance assignment, including side chains, has been achieved so far. The methodology rested on the use of 900 MHz 3D and 4D TROSY experiments recorded on a uniformly 15N,13C,2H-labeled sample and on a perdeuterated methyl protonated sample. The structure was refined from 920 experimental constraints, giving an ensemble of 20 best structures with an r.m.s. deviation of 0.54 A for the main chain atoms in the core eight-stranded beta-barrel. The protein dynamics was assessed, in a residue-specific manner, by 1H-15N NOEs (pico- to nanosecond timescale), exchange broadening (millisecond to second) and 1H-2H chemical exchange (hour-weeks).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2008.10.021 | DOI Listing |
The glycoprotein hormones of humans, produced in the pituitary and acting through receptors in the gonads to support reproduction and in the thyroid gland for metabolism, have co-evolved from invertebrate counterparts . These hormones are heterodimeric cystine-knot proteins; and their receptors bind the cognate hormone at an extracellular domain and transmit the signal of this binding through a transmembrane domain that interacts with a heterotrimeric G protein. Structures determined for the human receptors as isolated for cryogenic electron microscopy (cryo-EM) are all monomeric despite compelling evidence for their functioning as dimers .
View Article and Find Full Text PDFOncol Lett
March 2025
Pathology Department, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, P.R. China.
The human cytochrome b561 (hCytb561) family consists of electron transfer transmembrane proteins characterized by six conserved α-helical transmembrane domains and two β-type heme cofactors. These proteins contribute to the regulation of iron metabolism and numerous different physiological and pathological processes by recycling ascorbic acid and maintaining iron reductase activity. Key members of this family include cytochrome b561 (CYB561), duodenal CYB561 (Dcytb), lysosomal CYB561 (LCytb), stromal cell-derived receptor 2 (SDR2) and 101F6, which are widely expressed in human tissues and participate in the pathogenesis of several diseases and tumors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China. Electronic address:
The study collected liver tissue samples from PBC patients and healthy controls and performed transcriptomic analysis of the cells in the samples using single-cell RNA sequencing. The expression characteristics of SHISA5 in PBC were revealed by comparing the difference of SHISA5 protein in the two groups of samples. The structure of SHISA5 protein was predicted and its possible biological function was analysed by bioinformatics method.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
College of Life Sciences, Liaoning Normal University, Dalian 116000, Liaoning Province, China.
Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!