The ileal bile acid-binding proteins (I-BABPs), also called ileal lipid-binding proteins or gastrotropins, belong to the family of the fatty acid-binding proteins and play an important role in the solubilization and transport of bile acids in the enterocyte. This article describes the expression, purification, crystallization, and three-dimensional structure determination of zebrafish (Danio rerio) I-BABP both in its apo form and bound to cholic acid. This is the first X-ray structure of an I-BABP. The structure of the apoprotein was determined to a resolution of 1.6 A, and two different monoclinic crystal forms of the holoprotein were solved and refined to 2.2 A resolution. Three protein molecules are present in the asymmetric unit of one of the co-crystal forms and two in the other, and therefore, the results of this study refer to observations made on five different protein molecules in the crystalline state. In every case, two cholate ligands were found bound in approximately the same position in the internal cavity of the protein molecules, but an unexpected result is the presence of clear and unambiguous electron density for several cholate molecules bound on hydrophobic patches on the surface of all the five independent protein molecules examined. Isothermal titration calorimetry was used for the thermodynamic characterization of the binding mechanism and has yielded results that are consistent with the X-ray data. Ligand binding is described in detail, and the conformational changes undergone by the protein molecule in the apo-to-holo transition are examined by superposition of the apo- and holoprotein models. The structure of the holoprotein is also compared with that of the liver BABP from the same species and those of other I-BABPs determined by NMR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2008.10.007 | DOI Listing |
Eur J Med Chem
January 2025
Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.
View Article and Find Full Text PDFGac Med Mex
January 2025
Departamento de Anatomía Patológica, Fundación Clínica Médica Sur; Departamento de Biología Celular y Tisular, Escuela de Medicina, Universidad Panamericana. Mexico City, Mexico.
In 1869, Friedrich Miescher, born in Basel, Switzerland, discovered a previously unknown phosphorus-rich substance in the nuclei of pus cells. Conducting his research in a laboratory set up in the kitchen of Tübingen's medieval castle in Germany, and under the guidance by Professor Felix Hoppe-Seyler, Miescher primarily focused on the composition of cell nuclei. He obtained nuclear material by washing pus cells from surgical bandages provided by a nearby hospital.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
Co-inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), known as immune checkpoints, regulate the activity of T and myeloid cells during chronic viral infections and are well-established for their roles in cancer therapy. However, their involvement in chronic bacterial infections, particularly those caused by pathogens endemic to developing countries, such as Mycobacterium tuberculosis (Mtb), remains incompletely understood. Cytokine microenvironment determines the expression of co-inhibitory molecules in tuberculosis: Results indicate that the cytokine IL-12, in the presence of Mtb antigens, can enhance the expression of co-inhibitory molecules while preserving the effector and memory phenotypes of CD4+ T cells.
View Article and Find Full Text PDFRegarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Luigi Vanvitelli 32, 20133, Milan, Italy.
Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!