Identification and characterization of a novel fibril forming peptide in fungal starch binding domain.

Biochem Biophys Res Commun

Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 300, Taiwan, ROC.

Published: December 2008

Scanty information is available regarding the chemical basis for structural alterations of the carbohydrate-binding modules (CBMs). The N-terminal starch binding domain (SBD) of Rhizopus oryzae glucoamylase (GA) forms fibrils under thermal stress, presenting an unusual conformational change from immunoglobulin-like to beta-sheet-rich structure. Site-directed mutagenesis revealed that the C-terminal Lys of SBD played a crucial role in the fibril formation. The synthetic peptide (DNNNSANYQVSTSK) representing the C-terminal 14 amino acid residues of SBD was further demonstrated to act as a fibril-forming segment, in which terminal charges and an internal NNNxxNYQ motif were key fibril-forming determinants. The formation of fibril structure in a fungal SBD, caused by its chemical and biophysical requirements, was demonstrated for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2008.10.085DOI Listing

Publication Analysis

Top Keywords

starch binding
8
binding domain
8
identification characterization
4
characterization novel
4
novel fibril
4
fibril forming
4
forming peptide
4
peptide fungal
4
fungal starch
4
domain scanty
4

Similar Publications

As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.

View Article and Find Full Text PDF

Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.

View Article and Find Full Text PDF

The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.

View Article and Find Full Text PDF

Unlabelled: The concept of genome-microbiome interactions, in which the microenvironment determined by host genetic polymorphisms regulates the local microbiota, is important in the pathogenesis of human disease. In otolaryngology, the resident bacterial microbiota is reportedly altered in non-infectious ear diseases, such as otitis media pearls and exudative otitis media. We hypothesized that a single-nucleotide polymorphism in the ATP-binding cassette sub-family C member 11 () gene, which determines earwax properties, regulates the ear canal microbiota.

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!