Light-emitting diode therapy in chemotherapy-induced mucositis.

Lasers Surg Med

Department of Orthodontics and Pediatric Dentistry, São Paulo State University, Araraquara School of Dentistry, Araraquara, SP, Brazil.

Published: November 2008

Background And Objective: Mucositis is the most common oral complication of cancer chemotherapy, which causes pain on mastication and swallowing, impairs patients' ability to eat and take oral drugs and may determine interruption of the treatment. The aim of this study was to evaluate the effect of light-emitting diode (LED) therapy on chemotherapy-induced mucositis in hamsters.

Study Design/materials And Methods: Animals of both experimental (Group I; n = 32) and positive control (Group II; n = 32) groups received intraperitoneal injections of 5-fluorouracil on days 0 and 2. All animals had their right and left cheek pouch irritated by superficial scratching on days 3 and 4. In Group I, LED irradiation (630 nm+/-10 nm, 160 mW, 12 J/cm2) was applied during 37.5 seconds at days 3, 4, 6, 8, 10, 12, and 14. In Group II, mucositis was induced, but LED therapy was not performed. The oral mucosa was photographed from day 4 to 14 at 2-day intervals. Photographs were randomly scored according to the severity of induced mucositis (0 to 5). In the negative control group (Group III; n = 6), no mucositis was induced. Biopsies of the cheek pouches of 8 animals (Group I and Group II) were surgically obtained on days 5, 9, 13 and 15 and processed for histological examination.

Results: The statistical analysis showed significant differences between irradiated and non-irradiated groups (P<0.05). However, muscular degeneration was observed in 18% of the samples of Group I.

Conclusion: It may be concluded that the LED therapy protocol established for this in vivo study was effective in reducing the severity of oral mucositis, although the oral lesions were not completely prevented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.20677DOI Listing

Publication Analysis

Top Keywords

light-emitting diode
8
therapy chemotherapy-induced
8
chemotherapy-induced mucositis
8
led therapy
8
group
8
control group
8
days group
8
mucositis induced
8
group group
8
mucositis
6

Similar Publications

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

Understanding the dynamics of injected charge carriers is crucial for the analysis of the perovskite light-emitting diode (PeLED) operation. The behavior of the injected carriers largely dictates the external quantum efficiency (EQE) roll-off at high current densities and the temperature dependence of the EQE in PeLEDs. However, limitations such as sample capacitance and external circuitry hinder precise control of carrier injection rates, making it challenging to directly track the dynamics of individual carriers.

View Article and Find Full Text PDF

CaLuScAlSiO:Ce Green Phosphors for High-Quality White LEDs.

Inorg Chem

January 2025

College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, P.R. China.

Phosphors with broadband green emission are highly desirable for the construction of high-color-rendering warm-white light-emitting diode (LED) devices toward healthy solid-state lighting applications. However, most of the reported green phosphors are subject to an undesirable emission bandwidth and low quantum efficiency. Here, a highly efficient broadband green-emitting garnet phosphor, CaLuScAlSiO:Ce (CLSASO:Ce), is successfully synthesized and investigated in detail.

View Article and Find Full Text PDF

Landau-Levich Scaling for Optimization of Quantum Dot Layer Morphology and Thickness in Quantum-Dot Light-Emitting Diodes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.

Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.

View Article and Find Full Text PDF

Reducing aggregation caused quenching and enhancing stability is crucial in the fabrication of organic light-emitting diodes. Herein, we successfully fabricated blue-emitting coordination polymer glasses using perylene dye and a zinc-based coordination glass. The aggregation of perylene monomers in the solid state was significantly suppressed, and the hybrid glass demonstrated high stability and strong photoluminescent quantum yield (75.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!