During the last several years, sphingolipids have been identified as a source of important signaling molecules. Particularly, the understanding of the distinct biological roles of ceramide, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P) and lyso-sphingomyelin in the regulation of cell growth, death, senescence, adhesion, migration, inflammation, angiogenesis and intracellular trafficking has rapidly expanded. Additional studies have elucidated the biological roles of sphingolipids in maintaining a homeostatic environment in cells, as well as in regulating numerous cellular responses to environmental stimuli. This review focuses on the role of S1P and C1P in maintaining Ca2+ homeostasis. By studying changes in the metabolism of S1P and C1P in pathological conditions, it is hoped that altered sphingolipid-metabolizing enzymes and their metabolites can be used as therapeutic targets.
Download full-text PDF |
Source |
---|
Mol Genet Genomics
December 2024
Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia.
Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.
View Article and Find Full Text PDFMicrob Ecol
December 2024
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world.
View Article and Find Full Text PDFArch Orthop Trauma Surg
December 2024
Faculty of Medicine, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
Introduction: Cementless fixation plays an increasing role in total knee arthroplasty (TKA). The objective of this review article is to analyze functional outcomes and survivorship of cementless TKA.
Materials And Methods: A comprehensive literature search for studies reviewing the outcome and survivorship of cementless TKA was conducted.
J Agric Food Chem
December 2024
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.
View Article and Find Full Text PDFInt J Cancer
December 2024
Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
Overcoming luminal breast cancer (BrCa) progression remains a critical challenge for improved overall patient survival. RUNX2 has emerged as a protein related to aggressiveness in triple-negative BrCa, however its role in luminal tumors remains elusive. We have previously shown that active FGFR2 (FGFR2-CA) contributes to increased tumor growth and that RUNX2 expression was high in hormone-independent mouse mammary carcinomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!