AI Article Synopsis

Article Abstract

Atomic force microscopy (AFM) can directly visualize single molecules in solution, which makes it an extremely powerful technique for carrying out studies of biological complexes and the processes in which they are involved. A recent development, called Recognition Imaging, allows the identification of a specific type of protein in solution AFM images, a capability that greatly enhances the power of the AFM approach for studies of complex biological materials. In this technique, an antibody against the protein of interest is attached to an AFM tip. Scanning a sample with this tip generates a typical topographic image simultaneously and in exact spatial registration with a "recognition image." The latter identifies the locations of antibody-antigen binding events and thus the locations of the protein of interest in the image field. The recognition image can be electronically superimposed on the topographic image, providing a very accurate map of specific protein locations in the topographic image. This technique has been mainly used in in vitro studies of biological complexes and reconstituted chromatin, but has great potential for studying chromatin and protein complexes isolated from nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60327-461-6_8DOI Listing

Publication Analysis

Top Keywords

topographic image
12
recognition imaging
8
atomic force
8
studies biological
8
biological complexes
8
protein interest
8
protein
5
image
5
imaging chromatin
4
chromatin chromatin-remodeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!