Cyclic ADP-ribose is an important Ca(2+)-mobilizing cytosolic messenger synthesized from beta-NAD(+) by ADP-ribosyl cyclases (ARCs). However, the focus upon ectocellular mammalian ARCs (CD38 and CD157) has led to confusion as to how extracellular enzymes generate intracellular messengers in response to stimuli. We have cloned and characterized three ARCs in the sea urchin egg and found that endogenous ARCbeta and ARCgamma are intracellular and located within the lumen of acidic, exocytotic vesicles, where they are optimally active. Intraorganelle ARCs are shielded from cytosolic substrate and targets by the organelle membrane, but this barrier is circumvented by nucleotide transport. We show that a beta-NAD(+) transporter provides ARC substrate that is converted luminally to cADPR, which, in turn, is shuttled out to the cytosol via a separate cADPR transporter. Moreover, nucleotide transport is integral to ARC activity physiologically because three transport inhibitors all inhibited the fertilization-induced Ca(2+) wave that is dependent upon cADPR. This represents a novel signaling mechanism whereby an extracellular stimulus increases the concentration of a second messenger by promoting messenger transport from intraorganelle synthesis sites to the cytosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581485PMC
http://dx.doi.org/10.1016/j.cub.2008.09.024DOI Listing

Publication Analysis

Top Keywords

second messenger
8
intraorganelle synthesis
8
synthesis sites
8
nucleotide transport
8
ca2+ signaling
4
signaling occurs
4
occurs second
4
messenger
4
messenger release
4
release intraorganelle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!