Sleeping beauty mutase (sbm) is expressed and interacts with ygfd in Escherichia coli.

Microbiol Res

Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.

Published: April 2009

In Escherichia coli, a four-gene operon, sbm-ygfD-ygfG-ygfH, has been shown to encode a putative cobalamin-dependent pathway with the ability to produce propionate from succinate in vitro [Haller T, Buckel T, Retey J, Gerlt JA. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 2000;39:4622-4629]. However, the operon was thought to be silent in vivo, illustrated by the eponym describing its first gene, "sleeping beauty mutase" (methylmalonyl-CoA mutase, MCM). Of the four genes described, only ygfD could not be assigned a function. In this study, we have evaluated the functional integrity of YgfD and Sbm and show that, indeed, both proteins are expressed in E. coli and that YgfD has GTPase activity. We show that YgfD and Sbm can be co-immunoprecipitated from E. coli extracts using antibody to either protein, demonstrating in vivo interaction, a result confirmed using a strain deleted for ygfD. We show further that, in vitro, purified His-tagged YgfD and Sbm behave as a monomer and dimer, respectively, and that they form a multi-subunit complex that is dependent on pre-incubation of YgfD with non-hydrolysable GTP, an outcome that was not affected by the state of Sbm, as holo- or apoenzyme. These studies reinforce a role for the in vivo interaction of YgfD and Sbm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741639PMC
http://dx.doi.org/10.1016/j.micres.2008.08.006DOI Listing

Publication Analysis

Top Keywords

ygfd sbm
16
escherichia coli
12
ygfd
9
vivo interaction
8
sbm
6
coli
5
sleeping beauty
4
beauty mutase
4
mutase sbm
4
sbm expressed
4

Similar Publications

Background: While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli.

View Article and Find Full Text PDF

Sleeping beauty mutase (sbm) is expressed and interacts with ygfd in Escherichia coli.

Microbiol Res

April 2009

Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.

In Escherichia coli, a four-gene operon, sbm-ygfD-ygfG-ygfH, has been shown to encode a putative cobalamin-dependent pathway with the ability to produce propionate from succinate in vitro [Haller T, Buckel T, Retey J, Gerlt JA. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 2000;39:4622-4629].

View Article and Find Full Text PDF

The Escherichia coli genome encodes seven paralogues of the crotonase (enoyl CoA hydratase) superfamily. Four of these have unknown or uncertain functions; their existence was unknown prior to the completion of the E. coli genome sequencing project.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!