Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro.

Ultrasound Med Biol

Sector of Medicine, Scuola Superiore Sant'Anna, Pisa, Italy.

Published: January 2009

The modulation of cellular endothelial permeability is a desirable goal for targeted delivery of labels and therapeutic macromolecules; the underlying mechanisms, however, remains poorly understood. Here, we hypothesize that a higher endothelial permeability may result as an outcome of selective enhancement of caveolar endocytosis by ultrasound (US), in the frequency and intensity range of current clinical diagnostic use. To assess the role of free radicals in this phenomenon, we exposed confluent human endothelial cells to pulsed diagnostic US for 30 min, with a mechanical index (MI) of 0.5 and 1.2, using a 1.6-MHz cardiac US scan, and endothelial cells not exposed to US were used as control. Here we show that pulsed diagnostic US with a MI of 1.2 (high mechanical index ultrasound [HMIUS]) were able to selectively enhance endothelial caveolar internalization of recombinant glutathione-S-transferase (GST)-Tat11-EGFP fusion protein (26 +/- 1 vs. 11.6 +/- 1 A.U, p < 0.001 vs. control), without disruption of plasma membrane integrity. Moreover, pulsed diagnostic US with a MI of 0.5 (low mechanical index ultrasound) did not increase caveolar endocytosis compared with control (11.4 +/- 1.2 vs. 11.6 +/- 1). Free-radical generation inhibitors, such as catalase and superoxide dismutase, reduced the HMIUS-induced caveolar internalization by a 49.29% factor; finally, HMIUS-induced caveolar endocytosis was found to be associated with a significant increase in the phosphorylation of tyr-14-caveolin1, ser1177-eNOS and Thr202/Tyr204-ERK(1/2) compared with control. These findings show how HMIUS irradiation of human endothelial cells cause a selective enhancement of caveolar-dependent permeability, partially mediated by free radicals generation, inducing a marked increase of phosphorylation of caveolar-related proteins. Thus, the use of diagnostic US could potentially be used as an adjuvant to drive caveolar traffic of extracellular peptides by using a higher level of US energy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2008.07.011DOI Listing

Publication Analysis

Top Keywords

caveolar endocytosis
12
endothelial cells
12
pulsed diagnostic
12
endothelial permeability
8
selective enhancement
8
free radicals
8
human endothelial
8
mechanical ultrasound
8
caveolar internalization
8
+/- 116
8

Similar Publications

Dinuclear Dicationic Iridium Complexes for Highly Synergistic Photodynamic and Photothermal Therapy to Chemoresistant Cancer.

Inorg Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China.

A series of dinuclear Ir(III) complexes have been constructed for enhanced photodynamic and photothermal therapy (PDT and PTT) for cisplatin-resistant non-small-cell lung cancer. They enter cells via caveolar endocytosis, target mitochondria but not nuclear, generate both singlet oxygen and superoxide anion, and release heat when exposed to infrared (IR) irradiation, thus inducing reactive oxygen species (ROS)-associated cell disruption and thermal ablation. The IR-generated ROS can further activate caspases, triggering apoptosis.

View Article and Find Full Text PDF

Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer.

View Article and Find Full Text PDF

Insights in caveolae protein structure arrangements and their local lipid environment.

Biol Chem

July 2024

Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany.

Caveolae are 50-80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins.

View Article and Find Full Text PDF

Unlabelled: The cellular junctional architecture remodeling by adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for () passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic ( or Δ) or double (Δ) mutant strains show significant defects.

View Article and Find Full Text PDF

HUNK inhibits cargo uptake and lysosomal traffic in the caveolar pathway via the AGAP3/ARF6.

Sci Bull (Beijing)

January 2024

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!