AI Article Synopsis

Article Abstract

The potential use of expanded polystyrene (EPS) beads for control of Aedes triseriatus was tested in the laboratory and the field. Laboratory studies showed that beads present in amounts which persisted throughout a season significantly reduced the emergence of Ae. triseriatus adults by preventing normal eclosion from the pupae. In the field, tree holes containing EPS beads had significantly fewer larvae present than untreated controls. These field data suggest that EPS beads may mechanically prevent oviposition by mosquitoes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

eps beads
12
expanded polystyrene
8
beads control
8
control aedes
8
aedes triseriatus
8
beads
5
potential scrap
4
scrap expanded
4
polystyrene beads
4
triseriatus potential
4

Similar Publications

Research on the Mechanical Properties of EPS Lightweight Soil Mixed with Fly Ash.

Polymers (Basel)

December 2024

School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China.

Expanded polystyrene (EPS) bead-lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead-lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as a lightweight material and cement and fly ash as curing agents in the raw soil were used to make EPS lightweight soil mixed with fly ash.

View Article and Find Full Text PDF

A multifaceted experimental design, including factorial design, Face-centered composite design (FCCD), and mixture design, was implemented to explore competitive interaction and adsorption behavior of chromium [Cr(VI)], lead [Pb(II)], and cadmium [Cd(II)] by the immobilized extracellular polymer (EPS) based biosorbent of Pseudomonas aeruginosa OMCS-1, in single and ternary metal solution. The prepared biosorbent preferentially adsorbed Cr (47.6 mg/g), Pb (46.

View Article and Find Full Text PDF

This paper discusses efforts made by past researchers to steady the expansive (problematic) soils using mechanical and chemical techniques - specifically with EPS beads, lime and fly ash. Administering swelling of problematic soils is critical for civil engineers to prevent structural distress. This paper summarizes studies on reduction of swelling potential using EPS, lime and fly ash individually.

View Article and Find Full Text PDF

Research on the mechanical properties of EPS lightweight soil mixed with slag.

PLoS One

January 2024

School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan, China.

Expanded polystyrene (EPS) bead lightweight soil composites are a new type of artificial geotechnical material with low density and high strength characteristics that can be widely used in engineering projects. To promote the wide application of EPS bead lightweight soil in engineering, when slag is used to replace part of the cement as a binding agent, it can better improve the effect of soil and reduce engineering costs. The mechanical properties of EPS lightweight soil mixed with slag were analyzed by conducting an unconfined compressive strength (UCS) test and triaxial test on lightweight soil with different EPS bead contents and slag contents.

View Article and Find Full Text PDF

The emerging global problem of antimicrobial resistance needs immediate attention. In this regard, this work demonstrates the use of expanded polystyrene waste in the synthesis of immobilized photocatalytic films for the treatment of antibiotics as well as for bacterial disinfection. A boron-cerium codoped TiO catalyst (of specific composition: BCeTiO) was immobilized in an expanded polystyrene (EPS) film prepared from waste EPS beads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!