A new regulatory mechanism of NF-kappaB activation by I-kappaBbeta in cancer cells.

J Mol Biol

Molecular Oncology Branch, Division of Basic and Applied Sciences, Research Institute, National Cancer Center, Ilsandong-Gu, Goyang, Gyeonggi-Do, Republic of Korea.

Published: December 2008

Transglutaminase 2 (TGase 2) catalyzes covalent isopeptide bond formation between glutamine and lysine residues. Recently, we reported that TGase 2 activates nuclear factor-kappa B (NF-kappaB) by depleting inhibitor of NF-kappaBalpha (I-kappaBalpha) levels via polymer formation. Furthermore, TGase 2 expression synergistically increases NF-kappaB activity with canonical pathway. The major I-kappaB proteins such as I-kappaBalpha and I-kappaBbeta resemble each other in both primary sequence and tertiary structure. However, I-kappaBbeta does not degrade fully, while I-kappaBalpha degrades immediately in response to most stimuli. We found that I-kappaBbeta does not contain any of the previously identified TGase 2 target sites. In this study, both an in vitro cross-linking assay and a TGase 2 transfection assay revealed that I-kappaBbeta is independent from TGase 2-mediated polymerization. Furthermore, increased I-kappaBbeta expression reversed NF-kappaB activation in cancer cells, compensating for the loss of I-kappaBalpha via TGase 2 polymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2008.10.010DOI Listing

Publication Analysis

Top Keywords

nf-kappab activation
8
cancer cells
8
tgase
7
i-kappabbeta
6
regulatory mechanism
4
nf-kappab
4
mechanism nf-kappab
4
activation i-kappabbeta
4
i-kappabbeta cancer
4
cells transglutaminase
4

Similar Publications

Bone metastasis and skeletal-related complications are primary causes of mortality in advanced-stage prostate cancer (PCa). Epigenetic regulation, particularly histone modification, plays a key role in this process; however, the underlying mechanisms remain elusive. In mouse models, JARID1D was an important mediator of both visceral and bone metastases.

View Article and Find Full Text PDF

Introduction: Perioperative neurocognitive dysfunction (PND) is a significant challenge for patients who need surgery worldwide. Morphine can trigger an intense inflammatory reaction in the central nervous system (CNS) at the same time as analgesia, thus adverse effects aggravating PND. Microglia polarization is closely involved in the regulation of neuroinflammation and the TLR4/MyD88/NF-κB signaling pathway.

View Article and Find Full Text PDF

Pharmacological validation of a novel exopolysaccharide from sp. 139 to effectively inhibit cytokine storms.

Heliyon

July 2024

NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.

With the rapid development of immunotherapy in recent years, cytokine storm has been recognized as a common adverse effect of immunotherapy. The emergence of COVID-19 has renewed global attention to it. The cytokine storm's inflammatory response results in infiltration of large amounts of monocytes/macrophages in the lungs, heart, spleen, lymph nodes, and kidneys.

View Article and Find Full Text PDF

Background: Speckle-type POZ protein (SPOP), FAS-associated protein with death domain (FADD), and nuclear transcription factor-κB (NF-κB) have been shown to be associated with the development of prostate cancer (PCa). FADD has been shown to activate the NF-κB pathway to promote tumorigenesis, while SPOP has been shown to enhance the breakdown of FADD and inhibit the function of the NF-κB signaling pathway in non-small cell lung cancer. The existence of this mechanism has not yet been confirmed in PCa.

View Article and Find Full Text PDF

Infections of the nervous system, such as acute bacterial meningitis, pose serious health problems that require immediate intervention. In experimental animals, exposure to lipopolysaccharide (LPS) is used to induce meningitis. Aside from drug intervention to reduce inflammation in meningitis, aerobic exercise helps to maintain the regulatory mechanisms of brain homeostasis through anti-inflammatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!