Identification of the transcription initiation site reveals a novel transcript structure for Plasmodium falciparum maebl.

Exp Parasitol

Global Health and Infectious Disease Research, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA.

Published: January 2009

Strict regulation of gene expression is critical for the development of the malaria parasite within multiple host cell types. However, much remains unexplored regarding gene regulation in Plasmodium falciparum with only a few components of the gene regulation machinery identified thus far. Better characterization of transcript structures with precise mapping of transcript ends will greatly aid in the search of conserved regulatory sequences in the genome. Transcript analysis of maebl, a member of the ebl gene family, in P. falciparum intra-erythrocytic stages has revealed a unique transcript structure for maebl. The 5'-untranslated region of maebl transcript is exceptionally long (>2 kb) with a small multi-exon open reading frame, annotated as a putative mitochondrial ATP synthase (PF11_0485) in the Plasmodium database. Northern blot hybridizations and RT-PCR analysis confirmed a bicistronic message for maebl along with PF11_0485. We further identified the minimal maebl promoter to be upstream of PF11_0485 by using transient chloramphenicol acetyl transferase (CAT) reporter assays. The occurrence of a bicistronic mRNA in Plasmodium is both novel and unusual for a lower eukaryote and adds on to the complexity of gene regulation in malaria parasites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124596PMC
http://dx.doi.org/10.1016/j.exppara.2008.10.003DOI Listing

Publication Analysis

Top Keywords

gene regulation
12
transcript structure
8
plasmodium falciparum
8
transcript
6
maebl
6
gene
5
identification transcription
4
transcription initiation
4
initiation site
4
site reveals
4

Similar Publications

Galactinol synthase gene 5 (MdGolS5) enhances the cold resistance of apples by promoting raffinose family oligosaccharide accumulation.

Plant Physiol Biochem

December 2024

College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China. Electronic address:

Low-temperature stress is a limiting factor affecting the safe overwintering and stable production of apples. Galactinol, produced by galactinol synthase (GolS), is an important plant cryoprotectant. This study showed for the first time that exogenous spraying of apple saplings with 100 mg mL galactinol could effectively alleviate the damage from low-temperature stress.

View Article and Find Full Text PDF

How structural interactions and receptor phosphorylation shape strigolactone signaling in rice.

Dev Cell

January 2025

The BioActives Lab, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. Electronic address:

The phytohormone strigolactone (SL) regulates various developmental processes and plant adaptation to nutrient availability, which in turn regulates strigolactone biosynthesis. In the recent issue of Cell, Hu et al. advance the understanding of the interaction of the SL receptor complex and reveal exciting insights into the nitrogen-dependent regulation of SL signaling and SL-dependent tillering in rice.

View Article and Find Full Text PDF

CtWD40-6 enhances the UV-B tolerance of safflower by regulating flavonoid accumulation.

Plant Physiol Biochem

January 2025

College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China. Electronic address:

Moderate UV-B promotes plant growth, but excessive UV-B inhibits plant development. The induction mechanism of how CtWD40-6 responds to UV-B is still unclear in safflower. Our results showed that CtWD40-6 is expressed at the top of safflower leaves and is strongly induced by UV-B.

View Article and Find Full Text PDF

Exploring Multiplex Immunohistochemistry (mIHC) Techniques and Histopathology Image Analysis: Current Practice and Potential for Clinical Incorporation.

Cancer Med

January 2025

Department of Orthopaedics and Traumatology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.

Background: By simultaneously staining multiple immunomarkers on a single tissue section, multiplexed immunohistochemistry (mIHC) enhances the amount of information that can be observed in a single tissue section and thus can be a powerful tool to visualise cellular interactions directly in the tumour microenvironment. Performing mIHC remains technically and practically challenging, and this technique has many limitations if not properly validated. However, with proper validation, heterogeneity between histopathological images can be avoided.

View Article and Find Full Text PDF

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!