Background: Notch signalling is essential for the development and maintenance of the colonic epithelium. Its inhibition induces a differentiation phenotype in vivo and reduces adenomas in APCmin mice. Whether Notch signals are also required in colorectal cancer (CRC) has remained elusive. Therefore, 64 CRC cell lines were analysed for the occurrence of proteolytically processed, active Notch.
Results: 63 CRC lines contained a fragment with approximately the size of the Notch1 intracellular domain (NICD), which is required for signalling. Subsequent analyses with an antibody that specifically recognises the free Val1744 residue generated by gamma-secretase-mediated cleavage of Notch1 showed that a subset of CRC cells lacks this specific Val1744-NICD. Surprisingly, inhibition of Val1744-NICD signalling with different gamma-secretase inhibitors (GSI) did not lead to substantial effects on CRC cell line growth or survival. However, transient activation of Erk upon GSI treatment was detected. Since cisplatin relies on Erk activation for bioactivity in some cells, platinum compounds were tested together with GSI and enhanced cell killing in a subset of Val1744-NICD-positive CRC cell lines was detected. Erk inhibition ablated this combination effect.
Conclusion: We conclude that gamma-secretase inhibition results in activation of the MAP kinases Erk1/2 and, when used in conjunction, enhances cell death induced by platinum compounds in a large subset of colorectal cancer cell lines.Furthermore the activation of Erk appears to be of particular importance in mediating the enhanced effect seen, as its inhibition abrogates the observed phenomenon. These findings do not only highlight the importance of signalling pathway crosstalk but they may also suggest a new avenue of combination therapy for some colorectal cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584637 | PMC |
http://dx.doi.org/10.1186/1478-811X-6-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!