Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science.

Expert Opin Drug Metab Toxicol

University of Liverpool, MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, L69 3GE, UK.

Published: November 2008

Drug-induced liver injury (DILI) represents a major impediment to the development of new drugs and is a leading cause of drug withdrawal. The occurrence of hepatotoxicity has been closely associated with the formation of chemically reactive metabolites. Huge investment has focused on the screening of chemically reactive metabolites to offer a pragmatic approach to produce safer drugs and also reduce drug attrition and prevent market place withdrawal. However, questions surrounding the importance of chemically reactive metabolites still remain. Increasing evidence now exists for the multi-factorial nature of DILI, in particular the role played by the host immune system or disease state in the pathogenesis of DILI. This review aims to evaluate the current measures for the prediction and diagnosis of DILI and to highlight investigations being made to understand the multidimensional nature. Some of the steps being made to generate improved physiological systems to identify more sensitive, reflective mechanism-based biomarkers to aid the earlier identification of DILI and develop safer medicines are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425255.4.11.1415DOI Listing

Publication Analysis

Top Keywords

reactive metabolites
16
chemically reactive
12
dili
5
understanding role
4
reactive
4
role reactive
4
metabolites
4
metabolites drug-induced
4
drug-induced hepatotoxicity
4
hepatotoxicity state
4

Similar Publications

Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.

View Article and Find Full Text PDF

Activation of the kynurenine pathway identified in individuals with covert hepatic encephalopathy.

Hepatol Commun

December 2024

Macquarie Medicine School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.

Background: HE is a neuropsychiatric complication of liver disease characterized by systemic elevation in ammonia and proinflammatory cytokines. These neurotoxins cross the blood-brain barrier and cause neuroinflammation, which can activate the kynurenine pathway (KP). This results in dysregulated production of neuroactive KP metabolites, such as quinolinic acid, which is known to cause astrocyte and neuronal death.

View Article and Find Full Text PDF

The Italian Carciofo di Paestum () PGI, an artichoke variety from the Campania region, was investigated for its potential to reuse by-products for food supplements. EtOH:HO 50:50 and 75:25 extracts of its leaves were analyzed for phenolic and flavonoid content and antioxidant activity (TEAC: 1.90 and 1.

View Article and Find Full Text PDF

Acrylamide Exposure and Cardiovascular Risk: A Systematic Review.

Nutrients

December 2024

Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.

Acrylamide is a food contaminant formed during high-temperature cooking processes, leading to unintentional human exposure. Diet is the primary source for non-smokers, with potatoes, cereals, and coffee being the main contributors. While animal studies have demonstrated that acrylamide is neurotoxic, genotoxic, mutagenic, and cardiotoxic, its effects on human cardiovascular health remain poorly understood.

View Article and Find Full Text PDF

Suppression of NNK Metabolism by Anthocyanin-Rich Haskap Berry Supplementation Through Modulation of P450 Enzymes.

Pharmaceuticals (Basel)

November 2024

Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.

Oral supplementation of anthocyanins-rich haskap () berry (HB) reduces 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis, cytotoxicity, DNA damage, and modulated inflammation in vitro and in vivo. The procarcinogen NNK is metabolically activated by cytochrome P450 (P450) enzymes, producing reactive metabolites that induce lung carcinogenesis. : Therefore, we hypothesized that the HB-modulated protective effect against NNK could be due to its ability to suppress P450 enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!