Drug-induced liver injury (DILI) represents a major impediment to the development of new drugs and is a leading cause of drug withdrawal. The occurrence of hepatotoxicity has been closely associated with the formation of chemically reactive metabolites. Huge investment has focused on the screening of chemically reactive metabolites to offer a pragmatic approach to produce safer drugs and also reduce drug attrition and prevent market place withdrawal. However, questions surrounding the importance of chemically reactive metabolites still remain. Increasing evidence now exists for the multi-factorial nature of DILI, in particular the role played by the host immune system or disease state in the pathogenesis of DILI. This review aims to evaluate the current measures for the prediction and diagnosis of DILI and to highlight investigations being made to understand the multidimensional nature. Some of the steps being made to generate improved physiological systems to identify more sensitive, reflective mechanism-based biomarkers to aid the earlier identification of DILI and develop safer medicines are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17425255.4.11.1415 | DOI Listing |
J Physiol
January 2025
Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.
View Article and Find Full Text PDFHepatol Commun
December 2024
Macquarie Medicine School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
Background: HE is a neuropsychiatric complication of liver disease characterized by systemic elevation in ammonia and proinflammatory cytokines. These neurotoxins cross the blood-brain barrier and cause neuroinflammation, which can activate the kynurenine pathway (KP). This results in dysregulated production of neuroactive KP metabolites, such as quinolinic acid, which is known to cause astrocyte and neuronal death.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy.
The Italian Carciofo di Paestum () PGI, an artichoke variety from the Campania region, was investigated for its potential to reuse by-products for food supplements. EtOH:HO 50:50 and 75:25 extracts of its leaves were analyzed for phenolic and flavonoid content and antioxidant activity (TEAC: 1.90 and 1.
View Article and Find Full Text PDFNutrients
December 2024
Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
Acrylamide is a food contaminant formed during high-temperature cooking processes, leading to unintentional human exposure. Diet is the primary source for non-smokers, with potatoes, cereals, and coffee being the main contributors. While animal studies have demonstrated that acrylamide is neurotoxic, genotoxic, mutagenic, and cardiotoxic, its effects on human cardiovascular health remain poorly understood.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
Oral supplementation of anthocyanins-rich haskap () berry (HB) reduces 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis, cytotoxicity, DNA damage, and modulated inflammation in vitro and in vivo. The procarcinogen NNK is metabolically activated by cytochrome P450 (P450) enzymes, producing reactive metabolites that induce lung carcinogenesis. : Therefore, we hypothesized that the HB-modulated protective effect against NNK could be due to its ability to suppress P450 enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!