Hybrid fitness in a locally adapted parasite.

Am Nat

School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA.

Published: December 2008

The parasite (Red Queen) hypothesis for the maintenance of sexual reproduction and genetic diversity assumes that host-parasite interactions result from tight genetic specificity. Hence, hybridization between divergent parasite populations would be expected to disrupt adaptive gene combinations, leading to reduced infectivity on exposure to parental sympatric hosts, as long as gene effects are nonadditive. In contrast, hybridization would not cause reduced infectivity on allopatric hosts unless the divergent parasite populations possess alleles that are intrinsically incompatible when they are combined. In three different experiments, we compared the infectivity of locally adapted parasite (trematode) populations with that of F(1) hybrid parasites when exposed to host (snail) populations that were sympatric to one of the two parasite populations. We tested for intrinsic genetic incompatibilities in two experiments by including one host population that was allopatric to both parasite populations. As predicted, when the target host populations were sympatric to the parasite populations, the hybrids were significantly less infective than the parental average, while hybrid parasites on allopatric hosts were not, thereby ruling out intrinsic genetic incompatibilities. The results are consistent with nonadditive gene effects and tightly specific host-driven selection underlying parasite divergence, as envisioned by coevolutionary theory and the Red Queen hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1086/592866DOI Listing

Publication Analysis

Top Keywords

parasite populations
20
parasite
9
locally adapted
8
adapted parasite
8
red queen
8
queen hypothesis
8
divergent parasite
8
populations
8
reduced infectivity
8
gene effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!