AI Article Synopsis

Article Abstract

Nucleosomes were reconstituted from 170 bp long fragments of 5S rDNA and an optimal positioning sequence, the Selex 601, with recombinant histones. In free-solution single pair Förster resonance energy transfer (spFRET) measurements of the distance between fluorescently labeled bases in the nucleosomal DNA, the samples exhibited structural diversity. The structural heterogeneity correlated with the stability of the complexes and depended on the DNA sequence and histone acetylation. The stability of the nucleosomes was assessed via dilution-driven disruption: histone acetylation decreased nucleosome stability. The spFRET experiments used a new approach for data acquisition and analysis that we term "deliberately detuned detection" (D3). This permits the separation of subpopulations in the samples even for the low-FRET regime characteristic for the linker-DNA labeled nucleosomes. Thus, it became possible to study in more detail histone acetylation- and salt-dependent structural variations using either end- or internally labeled DNAs on the nucleosome. We found that the distance distribution of the fluorophore pairs on the linker DNA ends was much more sensitive to histone acetylation or sequence variation than that of labels on the internal part of the DNA, which was more tightly associated with the histone core. spFRET on freely diffusing nucleosomes allows us therefore to localize the influence of histone modifications and DNA sequence variations on the nucleosome structure and dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp7114737DOI Listing

Publication Analysis

Top Keywords

histone acetylation
16
förster resonance
8
resonance energy
8
energy transfer
8
acetylation sequence
8
sequence variation
8
dna sequence
8
histone
7
nucleosomes
5
sequence
5

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

DNA methylation, histone acetylation in the regulation of memory and its modulation during aging.

Front Aging

January 2025

Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.

Memory formation is associated with constant modifications of neuronal networks and synaptic plasticity gene expression in response to different environmental stimuli and experiences. Dysregulation of synaptic plasticity gene expression affects memory during aging and neurodegenerative diseases. Covalent modifications such as methylation on DNA and acetylation on histones regulate the transcription of synaptic plasticity genes.

View Article and Find Full Text PDF

Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis.

View Article and Find Full Text PDF

Background: Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained.

Methods: Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis.

View Article and Find Full Text PDF

Purpose: This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN.

Methods: Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!