A mixed quantum-classical method for calculating product energy partitioning based on a reaction path Hamiltonian is presented and applied to HF elimination from fluoroethane. The goal is to describe the effect of the potential energy release on the product energies using a simple model of quantized transverse vibrational modes coupled to a classical reaction path via the path curvature. Calculations of the minimum energy path were done at the B3LYP/6-311++G(2d,2p) and MP2/6-311++G** levels of theory, followed by energy-partitioning dynamics calculations. The results for the final HF vibrational state distribution were found to be in good qualitative agreement with both experimental studies and quasiclassical trajectory simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp806071g | DOI Listing |
Nat Commun
January 2025
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Automation and Electrical Engineering, Beihang University, Beijing 100191, China.
Since the field of autonomous vehicles is developing quickly, it is becoming increasingly crucial for them to safely and effectively navigate their surroundings to avoid collisions. The primary collision avoidance algorithms currently employed by self-driving cars are examined in this thorough survey. It looks into several methods, such as sensor-based methods for precise obstacle identification, sophisticated path-planning algorithms that guarantee cars follow dependable and safe paths, and decision-making systems that allow for adaptable reactions to a range of driving situations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.
View Article and Find Full Text PDFACS Nano
January 2025
School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China.
Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO colloidal motors and Janus spherical Pt/SiO colloidal motors.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
Background/objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) among vaccinees and their contacts. A novel OPV2 vaccine (nOPV2) with enhanced genetic stability was developed recently; type 1 and type 3 nOPV strains were engineered using the nOPV2 genome as a backbone by replacing the capsid precursor polyprotein (P1) with that of Sabin strains type 1 and type 3, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!