Surface properties of surfactant-free oil droplets dispersed in water studied by confocal fluorescence microscopy.

J Phys Chem B

East Tokyo Laboratory, Genesis Research Institute, Inc., 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan, and Cluster Research Laboratory, Toyota Technological Institute, 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan.

Published: May 2004

The fluorescence spectrum of dye molecules, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyron (DCM), dissolved in surfactant-free n-decane droplets (average diameters of approximately 300 and approximately 2000 nm) dispersed in water was measured by a confocal microscope. The fluorescence spectra for 300- and 2000-nm droplets are found to exhibit a peak at 640 and 625 nm, respectively, and the peak red shifts with a decrease in the droplet diameter (solvatochromic shift of DCM molecules). It is concluded that (1) DCM molecules are located in a polar surface region of n-decane droplets and (2) the polarity increases with decreasing the droplet diameter.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp036931pDOI Listing

Publication Analysis

Top Keywords

dispersed water
8
n-decane droplets
8
droplet diameter
8
dcm molecules
8
surface properties
4
properties surfactant-free
4
surfactant-free oil
4
droplets
4
oil droplets
4
droplets dispersed
4

Similar Publications

Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.

View Article and Find Full Text PDF

A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles.

Heliyon

January 2025

Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.

This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.

View Article and Find Full Text PDF

Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.

View Article and Find Full Text PDF

Recent developments on aerial lab-on-a-drone platforms for remote environmental monitoring: A review.

Anal Chim Acta

February 2025

Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:

Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.

View Article and Find Full Text PDF

Uptake and Transpiration of Solid and Hollow SiO Nanoparticles by Terrestrial Plant (Apium Graveolens var. secalinum).

Chemosphere

January 2025

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:

Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!